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Abstract:In the process of finding Pythagorean triangular numbers, we can imagine a 
related problem about how many triples exist with a nonzero constant difference between 
the square of these triples. In fact, it requires more calculations and theory of elliptic 
curves. Although it is difficult to find all such triples with fixed differences in the field of 
real numbers, to find them in finite fields can be handled without using very advanced or 
Abstractmathematics. This dissertation is going to find the general pattern of solutions of 
some specific elliptic curves in finite field. 

1. Introduction 

Pythagoras triangle numbers refer to triples which satisfy: 
2 2 2 ( , , )X Y Z X Y Z N+ = ∈                         (1) 

It was first recorded in Plimpton 322 in Babylonian tablet at around 1800 BC, which was one of 
the most famous artefacts in terms of mathematics. Babylonian, at that time, discovered a way to 
create the length of three sides of triangles. They set the square of one side to be equal to the sum of 
the square of two other sides. [1] 

According to Euclid’s formula, three sides of a right triangle have a general formula 
2 2 2 22 , ,a mn b m n c m n= = − = +                     (2) 

It also means that for any given whole number m & n, we can find a specific right triangle. As a 
result, there should be infinite number of right triangles with different length of three sides. 

However, the problem investigated in this dissertation is how many positive triples exist with 
nonzero fixed difference between the square of these three numbers. In other words, how many 
triples have the property that 

2 2 2 2Z Y Y X− = −                                (3) 
But this statement has not been elaborated. Given that (A, B, C) is a triple which has property (3), 

(kA, kB, kC) must also be a such triple if k N +∈ , so that infinite number of these triples occur. 
Therefore, we shall add one more restriction to the problem-- gcd( , , ) 1A B C = . After some 

calculation, the general formula for these special triples are 
2 2

2 2

2 1 1 2,
1 1

A m m C m m
B m B m

− − − −
= =

+ +
 

After that, a further problem can be how many of these triples (3) exist with a fixed difference
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d N +∈ between the square of three numbers. With some calculation, it can be transformed into 
another problem: How many rational points exist on 

2 3dy x x= −                                     (4) 
This dissertation is going to find some basic conjectures of solution in elliptic curves (4) with 

different coefficients d in the modulus field, and also expand the general law to larger values of d. 
Acknowledgment. This dissertation was written with the guidance of professor Márton 

Hablicsek and teaching assistant Zetong Liu during an mathematical research program for high 
school students. 

2. Design of the Code 

All data and findings are mainly derived from a series of Python code which will be listed in the 
appendix, and explanation of the code will be stated as follow. 

The p needs to be a prime number according to our assumption, ‘def isprime(N)’ is an important 
process to ensure that all p we input is a prime number. As the only divisor of the prime number is 1 
and itself, we divide all number from 2 to �𝑝𝑝 to p itself, and if p can be divided by any number, 
we break this cycle and state that the number is not a prime number. 

The core procedure in the code is definitely finding out the number of solutions for different 
values of p and d. ‘for x in range (0,par.p)’ and ‘for y in range(0,par.p)’ is two cycles which tests the 
validity of all possible integer points in this particular finite field . All valid points on the elliptic 
curve must satisfy 

2 3 (mod )dy x x p≡ −                           (5) 
In the code, if 2 3( ) 0(mod )dy x x p− − ≡ , the pair of x and y should be one of valid points on this 

elliptic curve. 
There are some theorem used in this dissertation. 
Theorem 2.1 Sum of Two Squares Theorem for Primes 
Let p be a prime. Then p is a sum of two squares if and only if 

1(mod 4)p ≡ or 2p =                            (6) 
Moreover, it is worth mentioning that, except for 2, all prime numbers are odd, and thus two 

squares adding up to p must include one odd number and one even number. 
Theorem 2.2 Quadratic Residue Theorem 
Let p be a prime. Then 2 0(mod )x p≡ if and only if 0(mod )x p≡ , and for 1 1x p≤ ≤ − , half of 

these values are quadratic residue and half of them are not. 

3. Number of Solutions 

Sample base chosen in the project is p the prime from 2 to 200, and the coefficient d chosen is 
from 1 to 50, which is enough to find the general pattern. 

The first significant pattern existing in these elliptic curves is the number of solutions when
3(mod 4)p ≡ , and surprisingly, it does not matter what the value of d is. For example, the number 

of solutions given that 1, 3d p= = is 3, and the counterpart when 1, 7d p= ≡ is 7. Most importantly, 
no matter how d changes, as long as the p we choose has a remainder of 3 when divided by 4, the 
number of solutions always equal to the p itself. 

The second pattern observed in the group of data is related to the number of solutions when
1(mod 4)p ≡ . At first, it seems a bit messy when 1(mod 4)p ≡ . For instance, when p=5, d=1, the 

number of solutions is 7, and the number of solutions becomes 15 when p and d are respectively 17 
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and 1. In other words, the number of solutions is never equal top, which is quite different from the 
first case. 

However, after trying to research the defect(N-p) between p and the number of solutions N, 
Some patterns appear out. In the case of d=1, the corresponding defect of p=5 is 2, p=13 is -6, p=17 
is -2, and p=29 is 10. Theorem 2.1 tell us that these are the primes that can be written as a sum of 
two squares 𝑝𝑝 = 𝐴𝐴2 + 𝐵𝐵2. Comparing the result to the sum of two square theorem for primes (6), 
there exists some relationship between the half of defect’s absolute value and p itself. 

For instance, as the number stated above, we can easily observe that the quantity 𝑝𝑝 − (𝑁𝑁−𝑝𝑝
2

)2 is 
always a perfect square. 

Another question is when (N-p) is positive and when it becomes negative. Hence, if we write 
𝑝𝑝 = 𝑎𝑎2 + 𝑏𝑏2 with 𝑎𝑎 positive and odd, then 𝑁𝑁 − 𝑝𝑝 = −2𝑎𝑎 if 𝑎𝑎 ≡ 1(mod 4) and 𝑁𝑁 − 𝑝𝑝 = 2𝑎𝑎 if 
𝑎𝑎 ≡ 3(mod 4). 

Above all, from the observation of prime numbers from 0 to 200, the conclusion comes out to be 
Result 3.1.1 

Conjecture 3.1.1 When d=1, the sign of N-p(defect) has the following pattern. 
(1)If 1(mod 4)p ≡ , write 2 2p a b= + with a positive and odd, then 
𝑎𝑎 ≡ 1(𝑚𝑚𝑚𝑚𝑚𝑚 4), 𝑏𝑏 ≡ 0(𝑚𝑚𝑚𝑚𝑚𝑚 4) defect=-2a 
𝑎𝑎 ≡ 1(𝑚𝑚𝑚𝑚𝑚𝑚 4), 𝑏𝑏 ≡ 2(𝑚𝑚𝑚𝑚𝑚𝑚 4) defect=2a 
𝑎𝑎 ≡ 3(𝑚𝑚𝑚𝑚𝑚𝑚 4), 𝑏𝑏 ≡ 0(𝑚𝑚𝑚𝑚𝑚𝑚 4) defect=2a 
𝑎𝑎 ≡ 3(𝑚𝑚𝑚𝑚𝑚𝑚 4), 𝑏𝑏 ≡ 2(𝑚𝑚𝑚𝑚𝑚𝑚 4) defect=-2a 
(2 ) If 3(mod 4)p ≡  ,defect=0, in other words, N=p 
In the process of expanding the result of d=1 to a larger value of d, for all values of d which do 

not show a consistency in terms of the sign of N-p when a and b ( 2 2p a b= + , with a positive and 
odd) is congruent modulus 4, we call such d ‘irregular’. In fact, quite a large proportion of values of 
p do not show any general pattern. For example, in the specific case where d=3, defect is -2 when 
p=5, 2 when p=37. However, write 2 25 1 2= + and 2 237 1 6= + , we can see that 2 and 6 are 
congruent modulus 4, which means that these two defects are not consistent with sign although their 
a and b are congruent. As a result, d=3 is ‘irregular’. 

However, except for ‘irregular’ d, other numbers still show some interesting relationship between 
the number of solutions and the value of p. There are mainly two groups of d, and d inside each 
group show exactly the same pattern. Group 1 is called ‘Square Group’, where 𝑑𝑑 = 𝑛𝑛2,𝑛𝑛 ∈ 𝑁𝑁+ 
and Group 2 is called ‘Double Square Group’, where 𝑑𝑑 = 2𝑛𝑛2,𝑛𝑛 ∈ 𝑁𝑁+. 

Results in two different groups are stated below. 

Conjecture 3.1.2 If d belongs to the ‘Square Group’, for 1(mod 4)p ≡ , write 2 2p a b= +  with a 
positive and odd, 

(1) If 1(mod 4), 0(mod 4)a b≡ ≡  or 3(mod 4), 2(mod 4)a b≡ ≡ , then
 
defect=-2a 

(2) If 1(mod 4), 2(mod 4)a b≡ ≡  or 3(mod 4), 0(mod 4)a b≡ ≡ , then defect=2a. 
For 3(mod 4)p ≡ , 
defect=0, in other words, N=p 
If d belongs to the ‘Double Square Group’,for 1(mod 4)p ≡ , and 2 2p a b= + , with a positive and 

odd, 
(1) 1(mod 4)a ≡              defect=-2a 
(2) 3(mod 4)a ≡              defect=2a. 
For 3(mod 4)p ≡ ,defect=0, in other words, N=p. 
If d is ‘irregular’, no pattern exists for 1(mod 4)p ≡ . 
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However, for 3(mod 4)p ≡ ,defect=0, in other words, N=p 

4. Coordinates Pattern of Solutions 

In this sector, the main focus is on the case where d=1 and 3(mod 4)p ≡ , because it is beyond the 
scope of this essay to investigate the reason of defect ( )N p− , and some patterns of quadratic 
residue no longer holds when 1d > . 

It is clear that three points must be on the elliptic curve(5) in the finite field in any cases where 
d=1, respectively (0,0),(1,0) and (p-1,0). It is easy to prove the first two one. For the last one, we 
just need to translate p-1 to -1 as they are congruent modulus p, and then we get 3( 1) ( 1) 0− − − = . I 
claim that the y-coordinate equals to 0 only in these three cases, which will be shown in Theorem 
4.1 

Theorem 4.1 For any values of prime number p, y-coordinate in all valid points are zero if and 
only if x=0 or x=1 or x=p-1. 

Proof  Assume there exists a 2 1m p≤ ≤ −  which creates a valid point(m,0). It means that 
3 0(mod )m m p− ≡ , so that 2( 1) 0(mod )m m p− ≡ . Hence, 2| ( 1)p m m − , as p is a prime either 
|p m or 2| 1p m − . But as m<p, m can never divided by p; 2 1 ( 1)( 1)m m m− = + − , so | 1p m + or 
| 1p m − , for 2 1m p≤ ≤ − , the only chance for this to hold is m=p-1, which completes the proof. 
Through observation of all valid points in the first few values of d, except for x=0, x=1, x=p-1, 

all other coordinates appear in pair with same value of x. This is easy to guess with the quadratic 
residue theorem. Once the value of 3x x−  is congruent to 2y , y can then have two distinct values. 

Furthermore, different x, besides 0,1, p-1, may create the same value of 3x x− , and this 
phenomenon occur for every 11p ≥  in the case where d=1. For example, when d=1 and p=11, x=2 
and x=7 responds to the same value 6 for 3x x− . Hence, p=7 is the only special case where 
different x creates different values of 3x x− . Result 4.1 will show some general patterns for 
coordinates of solutions for d=1 and 3(mod 4)p ≡ . 

Conjecture 4.1 For d=1 and 3(mod 4)p ≡ .Except x=0,1,p-1, we define all x which has the same 
value of 3x x−  as some other x as 1S , and the remaining as 2S . 

The x-coordinates of valid coordinates include 
(1)0,1,p-1 
(2)Half of x in 1S , occuring in pairs as one x corresponds to two valid y values 
(3)Half of x in 2S , occuring in pairs for the same reason 

5. Conclusion 

This project used sufficient number of experiments with Python codes to find out some general 
patterns of the number of solutions (valid coordinates) depending on the value of d and p, which 
was discussed in conjecture 3.1.2. Moreover, the patterns of x-coordinates in the situation where 

1, 3(mod 4)d p≡ ≡  was mentioned in conjecture 3.2.1. Since the academic level of author is 
limited, the project cannot give a further proof for patterns observed, and I sincerely hope that 
readers who have access to more advanced academic knowledge can help to prove the conjecture. 
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