Some Conclusions of the Derivatives of Leibniz triple systems

Gao Rui, Fan Yongyan
Department of Mathmatics, Cangzhou Normal University, Cangzhou, Hebei, 061001, China

Keywords: Leibniz triple system, Centroid, Construction
Abstract: According to the definitions of the centroid and the generalized derivation of Leibniz triple systems, some conclusions of centroid of Leibniz triple systems are developed. In particular, a kind of construction of Leibniz triple system is given in this paper.

1. Introduction

Leibniz triple systems were studied by Bremmner and Sanchez-Ortega, in $2011^{[1]}$. In paper [1], by using the algorithm of Kolesnikov and Pozhidaev, the definition of Leibniz triple system was given in a functional form. Cao Yan studied the centroids of Leibniz triple systems in reference [2]. In paper [3], by giving definitions of generalized derivation algebra $\operatorname{GDer}(L)$, quasi derivation algebra $Q \operatorname{Der}(L)$ and quasi centroid algebra $Q C(L)$ of a Leibniz triple system L, we have proved the relation and some properties of them. If L is a Leibniz triple system, we can get that $Q \operatorname{Der}(L)$ is a Lei algebra. We get the quasi centroid algebra $Q C(L)$ is a Lie algebra, and also get the sufficient and necessary condition of it. In this paper, some conclusions of centroid $C(L)$ of Leibniz triple systems are developed. In particular, a construction of Leibniz triple system is proved.

2. Definition

Definition $1^{[1]}$ A vector space L which is defined over a field F is a Leibniz
triple system if it satisfies the following two identities:

$$
\begin{aligned}
& \{x,\{y, z, u\}, v\}=\{\{x, y, z\}, u, v\}-\{\{x, z, y\}, u, v\}-\{\{x, u, y\}, z, v\}+\{\{x, u, z\}, y, v\} \text { (1) } \\
& \{x, y,\{z, u, v\}\}=\{\{x, y, z\}, u, v\}-\{\{x, y, u\}, z, v\}-\{\{x, y, v\}, z, u\}+\{\{x, y, v\}, u, z\}
\end{aligned}
$$

(2) $\forall x, y, z, u, v \in L$, where $\{, \cdot, \cdot$,$\} denotes trilinear operation in L$.

Definition $2^{[2]}$ Let L be a Leibniz triple system. The derivation of L is a linear transformation $D \in \operatorname{End}(L)$ of L into L, and satisfies the following
$D\left(\left\{a, a^{\prime}, a^{\prime \prime}\right\}\right)=\left\{D a, a^{\prime}, a^{\prime \prime}\right\}+\left\{a, D a^{\prime}, a^{\prime \prime}\right\}+\left\{a, a^{\prime}, D a^{\prime \prime}\right\}, \forall a, a^{\prime}, a^{\prime \prime} \in L$.
Definition $3^{[3]} L$ is a Leibniz triple system. Then f is called generalized derivation of L, satisfying:
$\left\{f a, a^{\prime}, a^{\prime \prime}\right\}=f_{1}\left(\left\{a, a^{\prime}, a^{\prime \prime}\right\}\right)-\left\{a, f_{2} a^{\prime}, a^{\prime \prime}\right\}-\left\{a, a^{\prime}, f_{3} a^{\prime \prime}\right\}, \forall f, f_{1}, f_{2}, f_{3} \in \operatorname{End}(L)$.

Then all generalized derivation of L are denoted by $\operatorname{GDer}(L)$.
Definition $4^{[3]}$ Suppose that L is a Leibniz triple system and L is defined over the field F. The centroid of L is the transforms on L given by

$$
C(L)=\left\{D \in \operatorname{End}(T) \mid D\left(\left\{a, a^{\prime}, a^{\prime \prime}\right\}\right)=\left\{D(a), a^{\prime}, a^{\prime \prime}\right\}=\left\{a, D\left(a^{\prime}\right), a^{\prime \prime}\right\}=\left\{a, a^{\prime}, D\left(a^{\prime \prime}\right)\right\},\right.
$$

for any $a, a^{\prime}, a^{\prime \prime} \in L$.
Definition $5^{[4]}$ Assume the $(L,[]$,$) is a binary group, where L$ is a linear space over the field F. The multiplication [,]: $L \times L \rightarrow L$ meets bilinearity. When $\forall x, y, z \in L$ is established, we can get the $[x,[y, z]]=[[x, y], z]-[[x, z], y]$. Thus, $(L,[]$,$) is called a Leibniz algebra.$

3. Conclusion

Theorem 1 The centroid $C(L)$ is the subalgebra of $\operatorname{GDer}(L)$.
Proof According to the Proposition 2.3 in [3], we can get $C(L) \subseteq Q \operatorname{Der}(L)$. And
from the definition of $Q \operatorname{Der}(L)$ and $\operatorname{GDer}(L)$, we can have the conclusion of $Q \operatorname{Der}(L) \subseteq G \operatorname{Der}(L)$. Then, according to the above conclusion, $C(L) \subseteq G \operatorname{Der}(L)$ is established. So, we can get that $C(L)$ is the subalgebra of $\operatorname{GDer}(L)$ easily.

Theorem 2 Let L be a Leibniz triple system over a field F. If L has ordinary center, $\mathrm{C}(L)$ is the interchange subalgebra of $\operatorname{GDer}(L)$.

Proof According to the above conclusion, we can have $\left\{D_{1} D_{2}(a), a^{\prime}, a^{\prime \prime}\right\}=\left\{a, D_{1} D_{2}\left(a^{\prime}\right), a^{\prime \prime}\right\}$ $=\left\{a, a^{\prime}, D_{1} D_{2}\left(a^{\prime \prime}\right)\right\}=\left\{D_{2} D_{1}(a), a^{\prime}, a^{\prime \prime}\right\}$, for any $D_{1}, D_{2} \in C(L), a, a^{\prime}, a^{\prime \prime} \in T$, which implies that $\left\{\left(D_{1} D_{2}-D_{2} D_{1}\right)(a), a^{\prime}, a^{\prime \prime}\right\}=0$. Moreover, if the center of T is $0,\left[D_{1}, D_{2}\right](x)=0$, and $\left[D_{1}, D_{2}\right]=0$.

Theorem 3 Suppose that $(L,\{,\}$,$) is a Leibniz triple system over a field F$. For 1 is unknown, we can define: $\tilde{L}:=\left\{\sum\left(a \otimes l, b \otimes l^{2}, c \otimes l^{3}\right): a, b, c \in L\right\}$. Thus, \tilde{L} with a trilinear operation $\quad\left\{a \otimes I^{i}, b \otimes I^{j}, c \otimes I^{k}\right\}=\{a, b, c\} \otimes I^{i+j+k}$,
$\forall a, b, c \in L, i, j, k \in\{1,2,3\}$, is a Leibniz triple system.
Proof According to the definition of the Leibniz triple system and the definition of \tilde{L}, we can get the following
$\left\{x \otimes I^{i},\left\{y \otimes I^{j}, z \otimes I^{k}, \xi \otimes I^{m}\right\}, \eta \otimes I^{n}\right\}$
$=\{x,\{y, z, \xi\}, \eta\} \otimes I^{i+j+k+m+n}$
$=\{\{\{x, y, z\}, \xi, \eta\}-\{\{x, z, y\}, \xi, \eta\}-\{\{x, \xi, y\}, z, \eta\}$
$+\{\{x, \xi, z\}, y, \eta\}\} \otimes I^{i+j+k+m+n}$
$=\{\{x, y, z\}, \xi, \eta\} \otimes I^{i+j+k+m+n}-\{\{x, z, y\}, \xi, \eta\} \otimes I^{i+j+k+m+n}$
$-\{\{x, \xi, y\}, z, \eta\} \otimes I^{i+j+k+m+n}+\{\{x, \xi, z\}, y, \eta\} \otimes I^{i+j+k+m+n}$,
for any $x, y, z, \xi, \eta \in L ; i, j, k, m, n \in\{1,2,3\}$. Then, the conclusion of the theorem that \tilde{L} is a Leibniz triple system is proved.

Acknowledgment

Funded by Science and Technology Project of Hebei Education Department(Z2018002).

References

[1] BREMNER M R,SANCHEZ-ORTEGA J. Leibniz triple systems [J]. Communications in Contemporary Mathematics, 2014, 16(1):1350051.
[2] Cao Yan, Du Desheng,Chen Liangyun. The centroid of a Leibniz triple system and its properties [J]. Journal of Natural Science of Heilongjiang University, 2015, 32(5):614-617.
[3] Gao Rui, Zhang Weiwei. Generalized Derivations of Leibniz Triple System[J]. Academic Journal of Humanities\& Social Sciences, 2020,11(3):104-111.
[4] Zhou Jia, Wang Zenghui. Generalized derivation of Jordan-Lie algebra [J]. Journal of Jilin University (Natural Science), 2017, 55(4):765-770.
[5] Zhou Jia, Ma Lili. Generalized derivation of Leibniz algebra [J]. Journal of Jilin University (Natural Science), 2016, 54(6):1221-1225.
[6] MA Y, CHEN L. Some Structures of Leibniz triple systems [J]. arXiv preprint arXiv: 1407.3978, 2014.
[7] Zhao Guanhua. Generalized derivation of Lie triple system [J]. Journal of Liaocheng University (Natural Science), 2004, 17(3):19-20.

