

Parallel HAIFA Hashing Algorithm Based on Lorenz
Chaos

Yuanyi Liu1,*, Xin Zhou 2, Ge Liu 2

1School of Electronic and Electrical Engineering, Lingnan Normal University, Zhanjiang 524048,
China

2School of Electronic and Information Engineering, Heilongjiang University of Science and
Technology, Harbin 150022, China

*corresponding author

Keywords: hash function, Lorenz chaotic system, Parallel structure, HAIFA iterative
structure

Abstract: Aiming at the inefficiency under parallel environment or large data computation,
HAIFA hash function based on Lorenz chaos is constructed in parallel, and a parallel hash
function based on Lorenz chaos is proposed. The algorithm compresses each message block
independently and can be executed concurrently. After the hash value of each message block
is obtained, every two hash values are combined. The odd-numbered rounds are combined
with modular addition and right loop operation, while the even-numbered rounds are
combined with XOR and left loop operation. The difference of each round of operation
further enhances the anti-collision and anti-forgery attacks of the algorithm. The new parallel
algorithm is tested for safety analysis and efficiency. The results show that the parallel
modified algorithm has good performance and high efficiency, which has certain reference
significance for the safety construction of parallel chaotic hash algorithm.

1. Introduction

Hash function changes data of any length to obtain a hash value of fixed length. It is widely used in
cryptographic protocols, digital signatures, integrity authentication and other fields. Chaos is sensitive
to initial value, pseudo-random, and difficult to predict, which is valued and favored by researchers.
It has become a new method and technical means of constructing hashing algorithm, and has been
gradually applied to information safety. In reference [1, 2], a new Hash function is designed based on
chaotic neural network. In literature [3], a one-way Hash function is designed with spatio-temporal
chaos and double disturbances based on serial. In literature [4], a Hash function based on cyclic shift
is designed with variable parameters. These serial modes lead to the failure of CPU's parallel
advantages and greatly reduce computing speed. In view of the inefficiency of the serial structure of
the current Hash function algorithms, the method of constructing parallel hash functions by using
chaotic systems began to rise with the aim of improving the running efficiency.

Li et al. [5] put forward a chaotic Hash function algorithm with variable parallel parameters based
on piecewise linear mapping, which enhanced the execution efficiency of the parallel algorithm.
However, when the chaotic parameter value is greater than 0.25, its iterative value degenerates to 0,

Advances in Computer, Signals and Systems (2021) 5: 98-106
Clausius Scientific Press, Canada

DOI: 10.23977/acss.2021.050116
ISSN 2371-8838

98

which becomes a fixed point. In this case, the algorithm does not have good confusion and diffusion.
In literature [6], a scheme with key hash based on parallel structure is proposed. The parallel structure
is designed by PMAC algorithm, and the XOR value is recompressed again. Hash collision can easily
occur by using equal-length forgery attack. In this paper, the HAIFA hash function based on Lorenz
chaos is constructed in parallel. The algorithm compresses each message block independently, and
every two adjacent message blocks are calculated as a whole according to the calculated values. Under
the premise of ensuring good confusion and diffusion effects and safety, the efficiency of the
algorithm is improved to meet various performance requirements for the hash function.

2. Preliminary Knowledge

2.1. Lorenz Chaotic Mapping

Lorenz chaotic mapping is a three-dimensional chaotic mapping, and its mathematical expression in
the form of differential equation is as follows:

⎩
⎪
⎨

⎪
⎧

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑎𝑎(𝑦𝑦 − 𝑥𝑥),
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝑏𝑏𝑏𝑏 − 𝑦𝑦 − 𝑥𝑥𝑥𝑥),
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (𝑥𝑥𝑥𝑥 − 𝑐𝑐𝑐𝑐)。

 (1)

In formula (1), , and are the control parameters of Lorenz chaotic system. The typical
values generally adopted are as follows , and . On the premise of maintaining

and unchanged, when , Lorenz chaotic system is in chaotic motion.

2.2. HAIFA Structure

HAIFA iterative framework is a hash function structure proposed by Biham and Dunkelman in 2006.
The iterative structure of HAIFA is shown in Figure 1. It is a generalized MD structure, but it changes
the input of message filling and compression functions of MD structure. The essential feature of
HAIFA structure is that random Salt and Counter are added into the compression function to ensure
the safety of iterative structure, so as to overcome the weak iterative ability of MD structure. In
addition, HAIFA structure has good anti-collision, which can resist long message attack and fixed
point attack.

Figure 1: HAIFA structure

3. Construction of Hash Function with Lorenz Chaotic HAIFA Structure

Because XOR logic has the nature of exchange, it is not advisable to use simple XOR logic to merge
hash values of each message block as it is vulnerable to equal-length forgery attack. Some improved
schemes based on XOR logic can attack with specific messages, and it is easy to have hash collision.

a b c
10=a 28=b 3/8=c

a c 74.27>b

99

Therefore, the original chaotic hash function is constructed in parallel with the improved parallel
structure, and the improved parallel algorithm structure is shown in Figure 2.

Figure 2: Algorithm structure; Compression function; Hash value

Main steps of improving parallel algorithm:
(1) Message filling and grouping
The length of the whole message is filled into an integer multiple of 512 bits, and each message is

divided into message blocks, which are represented by . Then, each message is divided into
sixteen 32-bit messages, denoted as .

(2) Message initialization
Firstly, eight initial hash values, namely , are set, and each initial hash value consists

of 32 bits, which are expressed in hexadecimal as follows
𝐻𝐻00 = 5BE0CD19, 𝐻𝐻10 = A54FF53A,𝐻𝐻20 = 1F83D9AB, 𝐻𝐻30 = BB67AE85, 𝐻𝐻040 = 3C61F372,

𝐻𝐻50 =9BE0CD19, 𝐻𝐻60 =510E527F, 𝐻𝐻070 =6A09E667.
The above values are square roots of 8 prime numbers, and the hexadecimal representation of the

first 32 digits of the decimal part is obtained. Four 32-bit random salt values are defined to store
randomly assigned salt values . Two counter values are defined, which are used to
save the number of compressed bits of the whole message at this time. 16 intermediate variables are
defined, and are respectively denoted as . It is obtained from the following formula that:

�
𝑣𝑣𝑖𝑖 = ℎ7−𝑖𝑖 0 ≤ 𝑖𝑖 ≤ 7

𝑣𝑣𝑖𝑖 = 𝑡𝑡0⨁𝑠𝑠𝑖𝑖−8 8 ≤ 𝑖𝑖 ≤ 11
𝑣𝑣𝑖𝑖 = 𝑡𝑡1⨁𝑠𝑠𝑖𝑖−12 12 ≤ 𝑖𝑖 ≤ 15。

Wherein: ──subscript of 16 intermediate variables;
──XOR operation.

(3) Compression function
The original BLAKE wheel function and Lorenz chaotic system are used to compress the cycle,

and its output is 16 intermediate variables, which are denoted as 𝜈𝜈𝑖𝑖′(0 ≤ 𝑖𝑖 ≤ 15). The extraction
formula for each value is:

ℎ𝑖𝑖 = 𝐻𝐻𝑖𝑖0⨁𝑣𝑣𝑖𝑖′⨁𝑠𝑠𝑗𝑗⨁𝑣𝑣𝑖𝑖+8′
 (2)

In formula (2), 0 ≤ 𝑗𝑗 ≤ 7 and . Then each ℎ𝑖𝑖(0 ≤ 𝑖𝑖 ≤ 7) is combined according to
formula (3) to obtain the hash value of each message block.

𝐻𝐻𝑖𝑖(𝑀𝑀) = ℎ0 ∥ ℎ1 ∥ ℎ2 ∥ ℎ3 ∥ ℎ4 ∥ ℎ5 ∥ ℎ6 ∥ ℎ7, (3)

i iM iM
0 1 15, , ,i i iM M M

0 0 0
0 1 7, , ,H H H

3210 ,,, ssss 0 1,t t

150 ~ vv

i
⊕

'
iv

4modij =

100

Wherein: ── tail addition operation;
── hash value of this message block.

(4) Hash combination
The hash values obtained from each message block are combined. In each round of combination,

it is necessary to judge the number of hash values in this round. If it is odd, it is necessary to complete
the tail of the last hash value in this round. The completion rule is
𝐻𝐻′ = 𝐻𝐻𝑘𝑘 ∥ 𝐻𝐻𝑘𝑘+1 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 2 = 1,
Wherein: ── the number of hash values in this round;
 ──the overall hash value of this round after completion;
 ──the last hash value;

── the hash value completed.
If the number of combinations in this round is even, remain unchanged, and then combination

every two hash values. The combination mode is

�
�𝐻𝐻𝑝𝑝 + 𝐻𝐻𝑝𝑝+1� >>> 7, 𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 2 = 1
�𝐻𝐻𝑝𝑝 ⊕ 𝐻𝐻𝑝𝑝+1� <<< 11, 𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 2 = 0

Wherein: ── modular addition operation;
>>>──Right cyclic shift operation;
<<<──Left cyclic shift operation;

──The number of rounds of combination of every two hash values
and ── hash values to be combined.

It can be seen that modular addition and right cyclic shift are used in odd rounds, and XOR and
left cyclic shift are used in even rounds. In this way, every hash value can be combined in each round.
The last hash value will be obtained in the last round, which is the hash value of the whole algorithm.

4. Hash Function with Lorenz Chaotic HAIFA Structure

The performance of the proposed algorithm is analyzed and discussed from several aspects, such as
hash value distribution, initial value sensitivity, characteristics of confusion and diffusion statistics
between plaintext and abstract, and anti-collision test.

4.1. Hash Value Distribution

The algorithm selects a message composed of random characters, and counts the distribution of ASCII
code values in the message and Hash values generated by the algorithm, as shown in Figure 3 and
Figure 4 respectively. It can be seen that the message is basically scattered in a limited area, and the
hash values are evenly distributed in the whole space, without exposing any statistical information
related to plaintext messages, which shows that the improved parallel algorithm has good distribution.

||
)(MHi

k
'H
kH

1−kH

+

n
PH 1+pH

101

Figure 3: Random character distribution

Figure 4: Distribution of hash values

4.2. Sensitivity of Initial Value

Hash algorithm should satisfy the sensitivity dependence on plaintext messages. To test the initial
value sensitivity of the new parallel algorithm, select a text: “Research on Parallel Hash Function
Based on Chaotic Map.”. Test is carried out under the following six conditions.

C1: Calculate the hash value of the given message.
C2: Change the first word "c" to "C".
C3: Change “.”at the end of the sentence to “,”.
C4: change the word "Hash" to "Hash-".
C5: add a "9" before the word "Based".
C6: Add a space at the end of the sentence.
The hash value obtained from C1~C6 is shown in Figure 5. It can be seen that slight changes in

the message will also lead to great changes in the output hash value. This proves that the proposed
new parallel algorithm has high initial value sensitivity.

102

Figure 5: Hash values in different cases

4.3. Confusion and Diffusion Statistics

Confusion and diffusion are two important indexes of hash function, which are mainly used for
avalanche effect test. From a statistical point of view, the relationship between plaintext and hash
value becomes complicated, and every bit of plaintext can affect hash value. The test indexes are as
follows:

Minimum number of changed bits:
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = min(𝐵𝐵𝑖𝑖),

Maximum number of changed bits:
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = max(𝐵𝐵𝑖𝑖),

Average change bits:

𝐵𝐵� = 1
𝑁𝑁
∑ 𝐵𝐵𝑖𝑖𝑁𝑁
𝑖𝑖=1 ,

 Average change probability:
𝑃𝑃 = (𝐵𝐵� 𝑛𝑛)⁄ × 100%,

Mean square deviation of :

∆𝐵𝐵 = � 1
𝑁𝑁−1

∑ (𝐵𝐵𝑖𝑖 − 𝐵𝐵�)2𝑁𝑁
𝑖𝑖=1 ,

Mean square deviation of :

∆𝑃𝑃 = �
1

𝑁𝑁 − 1
�(

𝐵𝐵𝑖𝑖
𝑛𝑛
− 𝑃𝑃)2 × 100%

𝑁𝑁

𝑖𝑖=1

Wherein: ── the number of tests;
── the length of the output hash value;
──the number of bits changed by the hash value obtained at .

Select an arbitrary piece of plaintext message, and use the statistics and test scheme defined in
literature [4] to make statistics on the confusion and diffusion characteristics of the new parallel
algorithm. The number of tests is 10000. Compared with the original and other parallel chaotic hash
algorithms, the results are shown in Table 2. The statistical results show that the index of the improved
parallel algorithm is slightly worse than the original algorithm. Compared with other parallel hashing

B

P

N
n

iB i

103

algorithms, its average change bit number is closer to the ideal value of 128, and its average change
bit rate is also closer to the ideal value of 50%, which is smaller than other parallel hashing algorithms.
Therefore, the improved parallel algorithm has good diffusion and stability.

Table 2: Statistics of confusion and diffusion of the parallel algorithms

Index Literature [5] Literature [8] Literature [9] Original
algorithm The algorithm

 128.94 128.71 127.21 127.98 128.56
 50.35 49.96 49.63 49.99 50.21
 8.45 8.53 8.61 8.054 8.32
 4.42 4.51 3.92 3.15 3.44

4.4. Anti-collision Analysis

The anti-collision test scheme of reference [7] is selected. The improved parallel hash algorithm has
been tested for 10 000 times, and the distribution of hash values of the same characters is shown in
Figure 6. It can be seen that there are not four or more hits, two are three hits, 72 are two hits, 1,213
are one hit, and there are no hits in 8,713 tests. The proposed new parallel algorithm also has good
anti-collision performance.

Figure 6: Distribution of the number of hash values with the same ASCII characters

In the anti-collision test, the collision resistance of hash function can be evaluated by calculating
the distance between hash values of two messages. The calculation formula is

𝑑𝑑ℎ𝑎𝑎𝑎𝑎ℎ = ∑ (|𝑡𝑡(𝑎𝑎𝑖𝑖) − 𝑡𝑡(𝑏𝑏𝑖𝑖))𝑁𝑁
𝑖𝑖=1 ,

Wherein: , ── the th ASCII character of two hash values; ──the absolute difference of
unit field between two hash values;

──converting the ASCII characters corresponding to into decimal values.
The ideal value of is 85.33. After testing for 10 000 times and comparing with the original

and other parallel hashing algorithms, the results are shown in Table 3. Seen from the results, the
average absolute distance of the improved parallel algorithm is close to the theoretical value of 85.33,
which indicates that the hash value of the new and improved parallel algorithm is evenly distributed,
and it can be judged that its statistical characteristics meet the anti-collision requirements.

B
%P
%B△
%P△

ia ib i hashd

)(xt x
hashd

104

Table 3: Absolute distance comparison of hash values for the new parallel algorithm

Algorithm Maximum Minimum
value

Average
value

Average of absolute
distances.

Literature [5] 4 317 1 208 2 656 84.53
Literature [8] 4 179 1 156 2 740 86.56
Literature [9] 4 472 1 467 2 730 85.21
Literature [10] 4 228 1 169 2 805 87.22
Literature [11] 4 383 1 465 2 638 83.67

Original
algorithm 4 109 1 431 2 730 85.31

This algorithm 4 150 1 351 2 767 85.55

4.5. Efficiency Analysis

The speed of the algorithm is also an important index to evaluate the hash function. The new
parallel algorithm uses parallel tree structure for calculation, which has more efficient computing
speed. Setting the number of message packets of the algorithm as and the computing time of the
compression function as , the computing time of this improved parallel algorithm is

𝑇𝑇′ = 𝑁𝑁 × 𝑙𝑙𝑙𝑙𝑙𝑙2𝑛𝑛
The proposed hash function scheme is implemented by Java,100MB message length, the new

parallel algorithm is implemented by Java on Intel (R) Core (TM) i5-8400 CPU @ 2.80ghz 16GB
RAM and Windows 10. Message of 100MB message is used for computing speed test. The proposed
new parallel algorithm is implemented by Java on Intel (R) Core (TM) i5-8400 CPU @ 2.80 GHz 16
GB RAM and Windows 10. After comparing with other parallel hash algorithms, the results are
shown in Table 4. It can be seen from the table that compared with other parallel chaotic hash
algorithms, the new parallel algorithm also has a highly efficient computing speed.

Table 4: Comparison of calculation speed for 100MB Messages

Algorithm Speed /Mbps
Literature[5] 927.2
Literature[8] 1 517.4
Literature[9] 678.3
Literature[10] 589.1
Literature[11] 1 208.5

New parallel algorithm 1 669.4

5. Conclusion

In this paper, the hash function based on Lorenz chaos is constructed in parallel. Each message block
is independently added to the compression process of each packet, so that it can be executed
concurrently. In the hash combination part, different combination methods are adopted to further
enhance the safety of the algorithm, and the final hash value can be obtained. The proposed algorithm
meets the performance requirements of hash function. Therefore, the efficiency analysis shows that
the efficiency of the algorithm proposed in this paper has been improved while the safety is
guaranteed.

n
N

105

References

[1] Wang, S.W. (2015) on information safety, network safety and cyberspace safety. Journal of Library Science in China,
41(2): 72-84.

[2] Wang, Y., Chen, Y., Zhao, Y. (2018) Parallel Hash Function Construction Algorithm Based on Piecewise Logistic
Mapping. Computer Engineering and Applications, 54(15): 38-43.

[3] Li, H.J., Long, M. Construction of one-way hash function with spatio-temporal chaos and double disturbances.
Journal of Chinese Computer Systems, 36(3): 539-543.

[4] Feng, Y.R., Li, Y.T., Xiao, D. (2011) Construction and performance analysis of chaotic hash function based on parallel
and variable parameters. Computer Applied Research, 28(11): 4307-4310.

[5] Li, Y., Li, X. (2016) Chaotic hash function based on circular shifts with variable parameters. Chaos Solitons &
Fractals the Interdisciplinary Journal of Nonlinear Science & Nonequilibrium & Complex Phenomena, 2016, 91: 639
- 648.

[6] Albertini, A., Aumasson, J.P., Eichlseder, M., et al. (2014) Malicious hashing: eve’s variant of SHA-1 //International
Conference on Selected Areas in Cryptography. Springer, Cham, 1 - 19.

[7] Wang, Y., Wong, K.W., Xiao, D. (2011) Parallel hash function construction based on coupled map lattices.
Communications in Nonlinear Science and Numerical Simulation, 16(7): 2810 - 2821.

[8] Lv, A.P., he, Y. (2011) parallel hash function based on chaotic neural network. Modern Science & Technology of
Telecommunications, 41(3): 38-41.

[9] Zhou, H., Wang, S. (2012) Collision analysis of a parallel keyed hash function based on chaotic neural network.
Neurocomputing, 97: 108-114.

[10] Cui, H.S., Tian, Y., Deng, S.J. (2016) Improved parallel chaotic Hash function using bi-directional coupled map
lattice. Computer Engineering and Applications, 52(4): 88-93.

[11] Zhao, G., Xu, G., Min, L.Q. (2011) Construction of a parallel spatiotemporal chaotic one-way Hash function.
Microcomputer Information, 27(5): 232-235.

106

	2.1. Lorenz Chaotic Mapping
	2.2. HAIFA Structure
	3. Construction of Hash Function with Lorenz Chaotic HAIFA Structure
	4. Hash Function with Lorenz Chaotic HAIFA Structure
	4.1. Hash Value Distribution
	4.2. Sensitivity of Initial Value
	4.3. Confusion and Diffusion Statistics
	4.4. Anti-collision Analysis
	4.5. Efficiency Analysis
	5. Conclusion
	References

