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Abstract: In most machine learning applications, selecting an appropriate machine learning
model requires advanced knowledge and many labor-intensive manual iterations. As a result,
automatic machine learning is particularly important in order to lower the threshold for
machine learning. In addition, feature selection is a very important data preprocessing
process. Selecting important features can alleviate the dimension disaster problem, and
removing irrelevant features can reduce the difficulty of learning tasks. The existing
automatic selection methods cannot perform the automatic selection of machine learning
model and feature selection model simultaneously on large-scale data. Therefore, in order to
adapt to the rapid development of the era of big data, this paper proposes to establish a unified
hyperparameter space for machine learning and feature selection, and adopt Bayesian
optimization model based on progressive sampling for automatic model selection. By
extensive experiments, we show that our approach can significantly reduce search time and
classification error rates compared to the most advanced automated model selection methods.

1. Introduction

In the era of big data, as the speed of data generation continues to accelerate, the volume of data
has an unprecedented growth, and new types of data to be analyzed are also emerging, making big
data machine learning and feature selection play an extremely important role in the intelligent analysis
and processing application of big data.

To lower the barriers to machine learning, computer science researchers have built a variety of
open source software tools, such as WEKA [1], MLBox, Scikit-Learn [2], PyBrain [3] and Knime [4].
These software tools incorporate a number of machine learning algorithms and allow for hyper-
parametric search and setting. However, the existing methods can only carry out automatic selection
of machine learning model, but cannot carry out automatic selection of machine learning model and
feature selection model simultaneously:.

To further improve the efficiency of data processing, a unified hyperparameter space was
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established for the machine learning model and feature selection model, and a Bayesian optimization
[5] model based on progressive sampling [6] was used for joint automatic model selection. Therefore,
we call our approach machine learning and feature selection combined with automatic model
selection based on progressive sampling. We show that our approach can significantly reduce search
time, classification error rates, and the number of unnecessary or false feature selections compared
with the most advanced automated model selection methods.
Our contributions are summarized as follows:
® A unified hyperparameter space for machine learning and feature selection was constructed,
and a combined automatic model selection based on progressive sampling was proposed.
® \We conduct extensive experiments on multiple data sets, and the results demonstrate that our
model produces promising results compared with state-of-the-art methods.

2. Related works

As our work in this paper aims to achieve efficient automatic selection of machine learning models
and feature selection models using Bayesian optimization methods of progressive sampling, we will
briefly review the following three topics:

2.1 Bayesian optimization

Our goal is to automatically select an effective combination of a machine learning algorithm, a
feature selection technique (if it is desirable to consider feature selection), and hyper-parameter values.
The current way of dealing with this problem [7] is to regard the choice of algorithm and the choice
of feature selection technique as new hyper-parameters at the top level and convert this problem to
selecting an effective hyper-parameter value combination. Bayesian optimization [8], also known as
sequential model-based optimization, is an iterative method for solving such black box optimization
problems.

In Bayesian optimization [9], a regression model R is first established to predict the error rate of
machine learning model according to the value of hyper-parameters. R is usually a random forest,
which can process and classify hyper-parameters. Compared with the traditional Bayesian
optimization based on Gaussian process, this method can solve the situation that the parameter types
in Gaussian regression process cannot be discrete. Bayesian optimization then iterates the following
steps: (1) Use R to find multiple promising combinations of hyper-parameter values for further
evaluation; (2) For each such hyper-parameter value combination A, the machine learning model is
trained and its error rate e is evaluated on the data set at A; And (3) update R with a new data point (4,
e). Iteration stops when a pre-selected stop criterion is met.

2.2 Progressive sampling for automatic machine learning model selection

In the process of training the model, we often conduct data sampling, so that our model can better
learn the characteristics of the data, so as to achieve better results. More fundamentally, data sampling
is the simulation of a random phenomenon, simulating a random event according to a given
probability distribution. Sampling has previously been used to select hyper-parameter values or
combinations of hyper-parameter values for a particular machine learning algorithm [10], but not so
that both hyper-parameter values and algorithms can be selected without limiting the hyper-parameter
value combinations of algorithms and feature selection techniques to a fixed set. Our goal is to make
our approach have better search result quality and search efficiency. Like typical Bayesian
optimization, our Bayesian optimization method based on asymptotic sampling attempts to avoid
searching in regions of hyper-parametric space containing low-quality combinations.
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2.3 Feature selection

In high-dimensional data [11], irrelevant features can interfere with the true features, which in turn
introduces heterogeneity in the data and generate dependence across the features [12]. So, we have to
select features that play a vital role in estimation and which are independent. feature selection is a
very important data preprocessing process. Selecting important features can alleviate the disaster
problem of dimension, and removing irrelevant features can reduce the difficulty of the learning task.
Automated feature selection is used to determine the role of each feature and to select the most useful
feature from the raw data features. The search strategy for feature selection involves three types of
algorithms [13]: complete search, heuristic search, and random search.

3. Method

In this section, we will elaborate on our proposed Bayesian optimization method based on
progressive sampling.

3.1 Problem statement

For the model automatic selection problem[14], given a data set D, a set of machine learning
algorithms A, a set of feature selection techniques B, and a hyper-parameter space A, the goal of
model selection is to identify the algorithm A* eA, feature selection technique B*&B and hyper-
parameter value combination A*eA having the lowest error rate for generalization among all
algorithms in A, feature selection techniques in B and hyper-parameter value combinations in A.
The generalization performance of an algorithm A €A, a feature selection technique BB and their
hyper-parameter value combination A</ is A4’s error rate and B2’s error rate for new data instances
that are not in D, where A, denotes A using A, Bz denotes B using A. The generalization performance
is estimated by M(A, B D), the error rates attained by Az and B when trained and tested on D, e.g.,
via stratified multi-fold cross validation to decrease the possibility of overfitting. Using this estimate,
the objective of machine learning model selection is to find:

A%y, B* )~ € argminge 4 pes1eaM (43, By, D).
3.2 Our Main Techniques

3.2.1 Consider the Hamming distance between combinations of hyper-parameter values

The few combinations of hyper-parameter values selected for the test need to reasonably cover the
hyper-parameter space, so we try to select test combinations that are at least a certain distance from
each other and have the lowest estimate of error rate in the previous round. In the implementation,
the Hamming distance [15] is used and the default number of combinations of super parameter values
selected for the test is nc=10 and the default distance threshold is t¢ =2. If the Hamming distance
between two combinations is greater than 2, they can be considered sufficiently far from each other.

Let Ai (1<i<g) denote the hyper-parameter value combinations selected for testing, g denote the
number of them, and ri denote the error rate ratio of A;. For each non-selected combination with an
error rate estimate of 100% from the previous round, we keep its error rate estimate at 100% for the
current round. For each other non-selected combination Ay, we multiply its error rate estimate from
the previous round by a factor ry to obtain its rough error rate estimate for the current round. If the
rough error rate estimate is >100%, it is set to 100%. Using inverse distance weighting, ry is computed
as a weighted average of the selected combinations’ error rate ratios:
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Where the weight w, ,, for i is set to 1/distance(4,, 4;), reflecting the intuition that the

further away Ai is from Ay, the less weight Ai should have. In case distance(Au, 4;)=0 for a specific |
(1<j<g), we set ry=rj. To prevent the factor ry from being overly influenced by an extreme ri, we
force each r; to fall into the range [0.25, 2.5]. If an r; is <0.25, we set it to 0.25. If an r; is >2.5, we
set it to 2.5.

3.2.2 Use multiple folds to estimate each selected combination’s error rate

We use a technique similar to multiple cross validation [16] on a small data set, using multiple
folds to increase the robustness of the estimate obtained. We use k times progressive sampling, which
defaults to k=3. M data instances are randomly divided into K parts of roughly the same size. In any
contraction that is not the last round, we use k folds. In the i-th (1<i <k) collapse, the i-th part of M
data instances forms the verification sample. The combination of all other parts of M data instances
forms the largest training set. For each combination of the machine learning algorithm and hyper-
parameter values selected for the test, we train the model using training samples and combinations
and estimate the error rate of the model on the verification samples. The average of all k times the
estimated model error rate is used as the estimated error rate of the wheel combination.

3.2.3 In each round of the search process, limit the time that can be spent on testing a combination

In each round of searching, for each test of the combination of the machine learning algorithm,
feature selection techniques and the hyper-parameter values on the folding, we impose a limit of Lt
on the feature selection time and L on the model training time. Like Auto-WAKE [7], once the time
spent on feature selection exceeds L, the test will be terminated and the estimated error rate of the
model will be set to 100%. We store the feature selection technique and its hyper-parameter values
in a cache shared by all algorithms. If feature selection is completed in L¢, once the time spent on
model training exceeds the time spent on L, the model training is stopped and the error rate of part
of the training model is estimated on the validation sample. For a small data set, we start with Lt = 10
sand Lt = 10 s in the first round of searching. For large data sets, we start with Lt =20 s and Lt =20
s in the first round. Then increase Lt and Lt by 50% each round.

3.2.4 Processing of feature selection

The results should be checked after feature selection is completed. Some combination of feature
selection techniques and their hyper-parameter values will result in all or no features being selected.
Using all features equals no feature selection[*®l . If the combination selects all or none of the features,
we set the estimated generalization error rate for 4 to 100%, skip the model training, and update the
regression model with (4, 100%) as new data points. The data point (4, 100%) prompts to avoid future
testing of the same feature selection technique and combinations of hyper-parameter values for that
technique. This helps save time. For the same purpose, we store the feature selection technique and
its hyper-parameter values in a cache shared by all algorithms. This cache is shared by all algorithms.
At the end of the first round, for each pair of combination A1 in the cache, we select the algorithm's
random hyper-parameter value combination 4> and update the algorithm's regression model with ((41,
A2), 100%) as new data points. This helps the regression model guide subsequent searches away from
areas of the hyper-parameter space where all or none of the features are selected.

Appropriate penalties for the use of feature selection. To prevent overfitting, we impose penalties
for using feature selection as a form of regularization. For a combination of machine learning
algorithms, feature selection techniques, and hyper-parameter values, if feature selection is used in
the combination, we update the regression model by multiplying its estimated error rate by a
predetermined constant > 1. We chose the default value of the constant to be 1.1 in order to punish
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the use of feature selection adequately, but not excessively.
3.3 The Complete, Progressive Sampling-Based Bayesian Optimization Method

In this part, we will introduce the progressive sampling-based joint automatic model selection of
machine learning and feature selection in detail. The whole method will be carried out in 5 rounds,
and the complete process is shown in Algorithm framework 1.

Algorithm framework 1: Progressive sampling-based joint

automatic model selection
1: Form the validation and initial training samples;
/I the first round

2: For each machine learning algorithm and feature selection
technique, test its default and 20 random hyper-parameter value
combinations;

3: ldentify and remove some unpromising algorithms and

techniques;

/I the intermediate rounds
4:Forround 2to 4 {
5: Expand the training sample;
6: For each remaining algorithm {
7 For hyper-parameter value combinations used in the
previous round, consider the Hamming distance between the
combinations to update their error rate estimates;
8: Conduct Bayesian optimization;
9 }
10: Identify and remove some unpromising algorithms;
11:}
/I the last round

12: Use the cross-validation method to select the final combination
of an algorithm and hyper-parameter values, use this
combination to build a model on the whole data set, and return
this model;

3.3.1 The first round

In the first round, we tested every applicable machine learning algorithm and feature selection
technique. For each algorithm and technique, we test the default combination of hyper-parameter
values and a predetermined number (the default is 20) of random hyper-parameter values, if any.
Firstly, the algorithms with error rate > 7 are eliminated, in which z = 0.5 is the threshold value of
error rate. Then if the number of remaining algorithms and techniques exceeds 40%, it will continue
to delete, keeping only the top 40% with the lowest error rate. The 0.5 and 40% numbers were selected
in order to strike a balance between removing enough algorithms in the first round to improve search
efficiency and the goal of not removing high-quality algorithms too soon.

3.3.2 The intermediate rounds

In each subsequent round, which is not the final round, we reduce the error rate differential
threshold z by multiplying by 0.8, expand the training sample, increase the time limit L and L¢, and
test and tweak promising combinations on an extended training set and further reduce the search
space.

34



For each machine learning algorithm and feature selection technique remaining from the last
round, we do it in three steps. In the first step, considering the Hamming distance between the
combinations of hyper-parameter values (Chapter 3.2), the combination of hyper-parameter values
used in the last round of tests is selected and its error rate in this round is obtained. The second step
is to obtain rough error rate estimates for the combinations used in the previous round but not selected
in the first round. As a final step, build the regression model using all the combinations tested against
the algorithm so far. Then the Bayesian optimization was carried out in C cycles. In the second round,
C =3, and in each subsequent round, C decreased by 1. In each cycle of Bayesian optimization, like
Auto-WEKA [7], 10 new combinations are selected for testing and used to modify the regression
model. To better cover the new region of the hyper-parameter space, each combination is randomly
selected. Finally, we used a method similar to the first round to identify and remove invalid algorithm
combinations, except that we increased the target percentage of the retention algorithm from 40% to
70%.

3.3.3 The last round

In the last round, we use the cross-validation method to select the final combination, and use the
final combination to build a model on the whole data set as the final model returned by our automatic
selection method.

4. Results

In this section, we have carried out extensive experiments on a variety of datasets and compared
the results with those of Auto-WEKA [7], which shows the effectiveness of our algorithm.

4.1 Experimental setting

In the experiment, we compare the progressive sampling-based joint automatic model selection of
machine learning and feature selection with the Auto-WEKA automatic selection method. As a
preliminary study, our aim is to demonstrate the effectiveness and feasibility of using progressive
sampling methods for joint selection machine learning and feature selection models and
hyperparameter values. Considering all 39 classification algorithms and feature selection techniques
in the standard Weka package [19], 21 well-known benchmark datasets are used. Each dataset is
divided into a training set and a test set. Training data is used in the search process and test data is
used to assess the error rate of the automatic selection method returning to the final model. Other
settings in the experiment are basically the same as Auto-WEKA. For the Auto-WEKA method, the
total time budget for each run on the dataset is 30 hours.

4.2 Overall results of the search process

For each data set, we run the Auto-WEKA automatic selection method and automatic model
selection based on machine learning and feature selection combined with progressive sampling for
five times using different random seeds. Each parameter used in our method is set to the default value.
For each automatic selection method and dataset, three indicators are given: the total time spent in
the search process, the number of different combinations of hyper-parameter values tested, and the
error rate of the final model in the test data, as shown in Table 1. For each indicator, the mean and
standard deviation of the five runs are displayed as average value + standard deviation. Small datasets
are shown in the first 11 rows and large datasets in the last 10 rows.

The Auto-WEKA automatic selection method runs for 30 hours each time. By contrast, our method
takes much less time, on average, it is about 15 times faster on small datasets and 4 times faster on
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large datasets. During the search process, our method achieves accelerations that are different than
the Auto-WEKA method from 3 in the MNIST Basic dataset to 31 in the German Credit dataset.

Compared with the Auto-WEKA method, our method tests more combinations during the search
process, especially for large datasets. On small datasets, our method tests an average of three times
more different combinations than the Auto-WEKA method. Of these, on four datasets, such as Car,
the Auto-WEKA method tests more combinations because it tests more distinct combinations than
our method by spending more time in the search process. On large datasets, our method averaged 40
times more combinations than the Auto-WEKA method.

On nearly all datasets, our automatic model selection based on machine learning and feature
selection combined with progressive sampling yields a lower error rate than the Auto-WEKA method
on test data. On Car and KDD09-Appentency datasets, the error rates are the same. Our method error
rate is slightly lower on three small datasets, such as Yeast, but the difference is very small (< 1%).
In small datasets, on average, our Bayesian optimization method based on progressive sampling has
a 4% lower error rate than the Auto-WEKA automatic selection method. On average, our method has
a 21% lower error rate than the Auto-WEKA method on large datasets. Overall, our approach has a
more significant advantage over small datasets in terms of large datasets.

Table 1: Overall results of the search process

Data set Time spent (hours) # of distinct combinations tested| Error rate on the test data (%)
Auto-WEKA| Our method | Auto-WEKA | Our method | Auto-WEKA | Our method
Car 30 2.0£04 1,954+1,050 1,524+35 0.00£0.00 0.00£0.00
Yeast 30 1.7+0.4 6,675+2,721 1,602+23 38.29+1.51 | 38.88+1.20
German Credit 30 1.0+0.3 3,364+952 1,602+29 28.40+1.26 | 27.00+1.11
Abalone 30 4.3+0.5 675+181 1,501+20 72.99+0.30 | 73.25+0.47
Wine Quality 30 4.2+0.8 1,429+823 1,633+33 33.97+0.75 | 34.12+0.70
KR-vs-KP 30 1.5+0.6 2,192+1 522 1,574423 0.42+0.24 0.40£0.11
Waveform 30 3.540.6 801+248 1,596+21 14.3340.15 | 14.2940.12
Semeion 30 4.7+0.7 408+103 1,594+9 5.58+0.82 5.03+0.21
Shuttle 30 1.7+£0.5 27592 1,610+£22 0.010+0.004 | 0.008+0.003
Secom 30 1.1+0.1 119490 1,699+47 8.13+0.57 7.83+0.09
Madelon 30 2.6+0.3 529+261 1,763+49 22.08+2.52 | 18.31+1.47
Convex 30 5.5+0.4 72449 1,766+73 26.24+4.93 | 23.37+0.87
KDDQ09-Appentency 30 6.0+0.5 155+127 1,783+72 1.74+0.00 1.74+0.00
Dexter 30 4.4+0.6 98+14 1,569+28 8.33£1.24 5.11+1.20
MNIST Basic 30 11.140.7 53+16 1,674+23 10.14+4.40 | 3.70+0.46
ROT. MNIST+BI 30 7.0£0.3 13413 1,637+17 63.31+5.76 | 55.81+0.16
Amazon 30 8.9+0.8 53+19 1,561+41 38.31+14.73 | 24.31+1.91
Gisette 30 9.440.3 43+25 1,586+31 2.3140.55 1.89+0.29
CIFAR-10-Small 30 10.04£0.5 46+21 1,546+34 67.87+5.36 | 57.42+0.52
Dorothea 30 7.31£0.9 52+45 1,625+25 6.29+2.09 5.74+0.48
CIFAR-10 30 10.0+0.9 29+24 1,529+72 62.02+7.68 | 52.83+0.78

4.3 Feature selection results of the final combination

Table 2 gives the results of feature selection. The Auto-WEKA automatic selection method makes
feature selection 75 times in 105 runs, but mostly makes unnecessary feature selection (all or none).
By contrast, our approach has made six feature selections and has never made unnecessary selections.
And it never causes all features to be selected or no features to be selected. There are two possible
reasons why feature selection is rarely used in the final combination of hyper-parameter values
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produced by Bayesian optimization methods based on progressive sampling: first, to help prevent
overfitting, we penalize the use of feature selection as a form of regularization; Second, some top-
level algorithms, such as support vector machines and random forests, have an internal feature
selection mechanism embedded in them. If our method chooses any of them as the final algorithm,
the separate feature selection section in the data analysis pipeline often becomes unnecessary.

In summary, from various experimental results, our automatic model selection based on machine
learning and feature selection combined with progressive sampling reduces the search time by an
average of 10 times, reduces the error rate by 13%, and makes feature selection more accurate than
Auto-WEKA automatic selection method. This is a significant advance in achieving fast turnover in
identifying high-quality solutions required for many machine learning-based data analysis tasks.

Table 2: Feature selection (FS) results

Data set Auto-WEKA Our method

# of times FS # of times FS
Car 4 0
Yeast 2 0
German Credit 3 0
Abalone 4 0
Wine Quality 4 0
KR-vs-KP 2 0
Waveform 4 0
Semeion 5 0
Shuttle 3 0
Secom 4 0
Madelon 4 4
Convex 4 0
KDDQ09-Appentency 5 0
Dexter 4 0
MNIST Basic 3 0
ROT. MNIST+BI 2 0
Amazon 4 1
Gisette 4 0
CIFAR-10-Small 3 0
Dorothea 4 1
CIFAR-10 3 0
Total 75 5

5. Conclusion

In this paper, a unified hyperparameter space is established for machine learning and feature
selection, and an automatic model selection method combined with machine learning and feature
selection based on progressive sampling is optimized. Experiments show that compared with the
existing automatic selection methods, our method greatly improves the search efficiency, the quality
of search results and the accuracy of feature selection. Future research will investigate other
techniques to further improve search efficiency without degrading the quality of search results, and
research will develop the theoretical basis to improve our approach.
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