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Abstract: This paper investigates the problem of secure lossy transmission over wiretap 
channels with side information and state information. Aiming at the reliability and security 
of compressed pictures, videos and other files when they are transmitted, a wiretap channel 
model with side information and state information and a secure lossy source transmission 
scheme based on double binning technique under this model are proposed. By using Fano 
inequality and Csiszár sum identity, the inner bounds of transmission rate, distortion rate and 
information leakage rate are proved. Considering noisy situations in reality, the Gaussian 
noise channel under this model is analyzed concretely as an example. Based on error 
estimation and differential entropy theorem, the inner bounds of transmission rate and 
distortion rate are obtained. Moreover, the equivocation rate is introduced to transform the 
information leakage rate into the minimum mean square error of the estimated source and its 
outer bound is also obtained. The simulation results show that under the optimal conditions 
of the proposed system model, the transmission rate can reach 0.7315 bits/source bit, the 
distortion rate can reach 0.0052 bits/source bit and the information leakage rate can reach 
0.1286 bits/source bit. 

1. Introduction 

With the development of network information technology, the amount of information generated in 
various fields has shown explosive growth. Among them, sensitive and private information, such as 
feature data in biometrics [1], electronic images of health examination recorded in medical system 
[2], video files in company Cloud Services [3], data sources in streaming media applications [4] and 
ecommerce transaction data set [5]. Transmission processing is particularly important. There is a huge 
amount of raw information that has not been processed. To transmit efficiently, compression is needed. 
How to ensure the security of transmission is a problem. Information theory improves the security of 
the system by studying the basic limits of information flow in network transmission and the optimal 
coding scheme to reach these limits. 

Secure transmission of information sources based on information theory was first proposed by 
Shannon [6]. On this foundation, Wyner proposed wiretap channel and it was assumed that the wiretap 
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channel was degraded compared with the legal channel, the message can be transmitted safely in 
noise channels [7]. Csiszár and Körner extended this conclusion to general broadcast channels. 
According to the uncertainty of the eavesdropper to the transmitted information, they measured the 
security level of the channel. They also established a rate-leakage region for public and confidential 
messages [8]. Slepian and Wolf did some research on the source coding with side information and get 
the corresponding achievable transmission rate region [9]. The above work is based on the secure and 
lossless transmission of the source. That is to say, the legal receiver reconstructs the source without 
distortion when the source is compressed and transmitted. If the source produces distortion during 
compression and transmission, we should consider the influence of distortion on the security during 
transmission. Wyner and Ziv defined the rate-distortion function ( )R D in source secure lossy 
transmission. They also added limited constraints such as rate, distortion and leakage rate. Its purpose 
is to keep the eavesdropper as unknown as possible to the transmitted message [10]. Chia and Chong 
described the rate-distortion region of Wyner-Ziv source coding with side information. It was pointed 
out that feedback from decoder to encoder would not reduce the total rate [11]. Villard and Piantanida 
studied the secure multi source coding problem when the side information is noncausal to the decoder. 
In addition, the inner and outer bounds of the rate-distortion-equivocation region are derived [12]. On 
the basis of these, they built the channel model that side information was noncausal to eavesdroppers. 
When the non-coding side information is noncausal to the legitimate users and the source received 
by legitimate users can be reconstructed without damage, a tighter rate-distortion-equivocation region 
is obtained [13]. Furthermore, Xu et al. used the degraded side information to refine the Gaussian 
vector source coding problem and they also used MSE(Mean Square Error) to derive rate-distortion 
region[14]. Considering that the statistical characteristics of wireless fading channels are constantly 
changing, Koyluoglu et al. introduced state information and indexed broadcast channels which had 
states. Finally, the OCP(Optimal Corner Points) and the distance between the outer bound and the 
achievable region are obtained[15]. Han et al. proposed a wiretap channel model in which the state 
information is available noncausally at the encoder and derived the inner bound of secrecy capacity 
and the key capacity of degraded wiretap channel [16].  

Through the above analysis, it can be seen that the side information can help the decoder to reduce 
the distortion rate between the source and the source estimation and the state information can be used 
to characterize the wireless fading channel with uncertain statistical characteristics and improve the 
message transmission rate. However, due to the complexity of the wireless channel, especially in the 
wireless fading wiretap channel, it often contains both side information and state information. How 
to design a secure and reliable encoding and decoding mechanism and delimit the related limited bit 
rate constraints needs further research. This paper proposes a secure lossy transmission scheme in 
which the side information is available noncausally at the decoder and the state information is also 
available noncausally at the encoder. According to the statistical difference among the side 
information, state information and channel noise, the inner bound of rate-distortion-information 
leakage rate is obtained and the optimal trade-off among the three is obtained. The reliability and 
security of the model are judged by what we obtained.We considering a secure lossy transmission 
model with side information and state information in wiretap channel, in which the side information 
is available noncausally at the decoder and the state information is also available noncausally at the 
encoder. The coding scheme is designed based on the system model and double binning technique. 
The inner bound of rate-distortion-information leakage rate is determined by combining joint 
typicality lemma, Fano Inequality, Csiszár Sum Identity and other information theories. The proof of 
achievability and the proof of converse are given. Taking the Gaussian noise wiretap channel under 
the system model as an example, the inner bounds of rate and distortion rate are derived. Then the 
information leakage rate is transformed into the minimum mean square error of the estimated source 
by introducing the equivocation rate.  Finally, the outer bound of the minimum mean square error of 
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the source estimation is obtained and the proof is given. Considering the difference of noise power 
between the legitimate channel and wiretap channel, the difference of side information noise power 
between legitimate receiver and eavesdropper and the difference of state information noise power 
between the legitimate receiver and eavesdropper, we have simulated the inner bounds of rate, 
distortion and information leakage rate under various conditions. Finally, the optimal trade-off among 
the three is obtained and the experimental results are compared and analyzed. 

2. System model 

2.1 Notation 

The entropy function ( )H ⋅ denotes the uncertainty about the random variable. Mutual information 
( )I ⋅ denotes the information about a random variable obtained from the observation of another 

random variable; X , Y and Z denote the discrete random variables on the finite set , and . x , 
y and z denote the values of X , Y and Z . Let X , Y and Z be three random variables on some 
alphabets with probability distribution ( )P x , ( )P y and ( )P z , respectively. If ( | ) ( | )P x yz P x y= , 
then they form a Markov chain, which is denoted by X Y Z− − . Notation n

kx stands for the collection
( )k k+1 nx ,x ,...,x  for any sequence *N

( )i i
x

∈
, in which *N represents the set of positive natural numbers. 

1
nx is simply denoted by nx . Random variable Y is said to be less noisy than Z w.r.t. Y if
(U;Y) ( ; )I I U Z≥ for each random variableU such that ( , )U X Y Z− − form a Markov chain. Let P , 

Q be two jointly scalar Gaussian random variables with the covariance matrix PQΓ . Conditional 

variance of Gaussian variables is calculated by |P QΓ .  denotes the real line and d
 denotes the $d$-

dimensional real Euclidean space. 

 

Figure. 1 Secure transmission of source over wiretap channels with side information and state 
information 

The system model over the noise wiretap channel with side information and state information is 
illustrated in Fig.1, which includes the transmitter Alice, the receiver Bob and the eavesdropper Eve. 
Alice wants to convey information to Bob in a way that Bob can reconstruct the source within a 
certain distortion, and meanwhile Eve is kept ignorant of the source as much as possible. Alice, Bob, 
and Eve observe the sequences of random variables

N
( )i i
X ∗∈

, 
N

( )i i
B ∗∈

and
N

( )i i
E ∗∈

respectively, which 

take values on , and , respectively. nX denotes the source. nY denotes the side information 
received by Bob. nE denotes state information received by Eve. Side information nB is available 
noncausally at the decoder．State information nS is available noncausally at the encoder. They are 
independent of channel noises. Alice input source X ∈ . Y ∈ and Z ∈ output at Bob and Eve, 
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respectively ． Assuming that an expected average transmission power constraint P such that 
2

i 1
( ( , )) , [1, 2 ]

n
n nR

iE x j S nP j
=

≤ ∈∑ , where the expectation is over the random state sequence nS . 

Assume that F , U and V are the sequences received by Bob and F , U andV are the sequences 
received by Eve. An ( , )n R code for secure lossy source coding is defined by the encoding function 

( )nf at the transmitter: n n nX S F× → , the decoding function ( )ng at the legitimate user: n n nY B X× → . 
Definition 1. Let ̂ be a reconstruction alphabet and define a distortion measure as the mapping

ˆ: [0, )d     . This mapping measures the cost of representing the symbol x by the symbol x̂ . 
The average distortion between nx and ˆnx is defined as 

1

1ˆ ˆ( , ) ( , )nn n
i ii

d X X d x x
n =

= ∑                           (1) 

Definition 2. If the random variable X is uniformly distributed on the set , the information 
leakage rate corresponding to (2 , )nR n  secret code is defined as  

1 ( ; , )n n n
eI I X Z E

n
=                              (2) 

Definition 3. A tuple 3( )eR,D,I +∈ is said to be achievable if, for any 0δ > , 1n ≥ , there exists an 
( , )n R δ+  code such that: 

ˆE[ ( , )]n n nd X X D δ≤ +                             (3) 

1 ( ; , ) +n n n
eI X Z E I

n
δ≤                             (4) 

Theorem 1. A tuple 3( )eR,D,I +∈ is said to be achievable if 

( )R I V;F | B≥ ,                               (5) 

ˆE[ ( , ( , , ))]D d X X V B Y≥ ,                            (6) 

( ) ( ) ( )eI I X;V,F,B - I X;B |U,F + I X;E |U,F≥       ,                     (7) 

for some U , V satisfying the Markov chain ( , ) ( , )U V X F B E− − − and ( , ) ( , )U V F S Y Z− − − . 
U  and V denote the auxiliary random variables on the finite set , . Function ˆ ( )X V,B,Y stands 
for source decoding sequence function. 

Proof. 1) Proof of achievability. Achievability is proved by a random coding scheme based on 
the double binning technique. The scheme details are given in section III. 

Analysis of the rate. Define the transmission rate of the source as +R δ , 0δ → , whereδ
represents the error value in the transmission. 

There exists + ( ) ( ) ( ) ( )R I U;F - I U;B + I V;F |U - I V;B |Uδ >
( )

( ; ) ( ; )
a
= I V F I V B−

( )
( ; ) ( ; )

a
= I V F I V B− , 

where (a) follows from the Markov chain ( , ) ( )U V X F B− − − , and (b) follows from the Markov 
chain V F B− − . 

Analysis of the distortion. Record 'Fault' as errors in the encoding or decoding step. 
( ) ( )

max( ( , ( , ))] {Fault} [ ( , ( , , )) | Fault]+ {Fault} ( )n n n n n n n n
uE d X g Y B P E d X g r Y B P E d≤
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2
1

1 ˆ[ ( , ( ( ), , )) | ]
n

i i v
i

E d X X C r Y B Fault
n

ε
=

≤ +∑ ˆ[ ( , ( , , ))]E d X X V Y B ε= + D ε≤ + , where 0ε → as

n →∞ . 
Analysis of the information leakage rate.  

( ; , )n n nI X Z E ( ; , , , | )n n
f u v nI X w w w E C=    ( ; , , , | )n n n

f v nI X w U w E C≤ 

   

( | ) ( , , , , | ) ( , , | ) ( | , , , )n n n n n n n
n f v n f v n f v nH X C H X w U w E C H w U w C H E w U w C= − + +  

       

( | , ) ( , , | , , ) ( , , | ) ( | , , , )n n n n n n n n
n f v n f v n f v nH E X C H w U w X E C H w U w C H E w U w C= − − + +  

       
( )

( | , F ) ( , , | ) ( | , , , )
a

n n n n n
n f v n f v nH E X H w U w C H E w U w C≤− + + 

     
( )

( | , F ) ( | ) ( | ) ( | ) ( | , , , )
b

n n n n n
n f n n v n f v nH E X H w C H U C H w C H E w U w C≤− + + + + 

     
( )

[ ( | , F) ( ; ) ( ; | ) 5 ( ; | , ) ( ; | , )]
c

n H E X I X F I U X F I V X U F I V B U Fδ≤ − + + + + −           
( )

'[ ( ; , , ) ( ; | , ) ( ; | , ) ]
d

n I X V F B I X B U F I X E U F δ= − + +     

'[ ]in R δ≤ + , where (a) follows from the 
facts that conditioning reduces entropy and that ( , )n n n

nC X F E− − forms the Markov chain, (b) follows 
from the given codebook in Section III, nF and nU are functions of fw , (c) follows from the 
codebook generation in Section III, the memoryless properties of the source and the side information 
channel, the Lemma 1 below with which we bound the term ( | , )n n nH E X F and Lemma 2 below with 
which we bound the term ( | , , )n n n nH E F U C , and (d) follows from the Markov chain 
( , ) ( , )B E X F V U− − − . Lemma 1 [17] and Lemma 2 [17] are as followed:  

Lemma 1. Tuple ( , )n nX A is jointly typical with high probability. A sequence of independent and 
identically distributed (i.i.d.) random variables with ( )nZ P Z | XA . There exists 

 ( | , ) ( ( | , ) )n n nH Z X A n H Z X A θδ≥ − ,                        (8) 

Where 0θδ → as n →∞ and 0θ → as n →∞ .   
Lemma 2. Tuple ( , , )n n nA U Z is jointly typical with high probability. nC denotes a random 

codebook. There exists 

 ( | , , ) ( ( | , ) )n n n nH Z A U C n H Z A U θδ≤ + ,                      (9) 

Where 0θδ → as n →∞ and 0θ → as n →∞ .This completes the proof of achievability. 
Proof of converse.  

Analysis of the rate. ( )n R ε+ ( )nH Y≥
( )

( ; )
a

n n nI Y F B=
( )

( ; | )
b

n n nI Y F B=  
( )

1

1
( ; | )

nc
n i n

i
i

I Y F F B−

=

= ∑ 1 1 1 1
1 1

1
[ ( ; | ) ( ; | )]

n
n i i n i i n

i i i i i i
i

I Y F B B F B I F B B F B− − − −
+ +

=

= −∑  

( )
1 1

1
1

( ; | )
nd

n i i n
i i i

i
I Y F B B F B− −

+
=

= ∑
( )

1
( ; | )

ne

i i i
i

I V F B
=

≥ ∑ ,where (a) take no account of distortion and noise, 

the information Bob receives is n nF B , (b) follows from the nonnegativity of mutual information, (c) 
follows from the chain rule of the conditional mutual information, (d) follows from the independence 
of the random variables F and B , and (e) follows from the nonnegativity of mutual information and 

1 1
1( , , , ), {1,..., }i i n n

i iV F B B Y i n− −
+= ∈ . 
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Analysis of the distortion. Bob uses the decoding function ( , )n n
vg w B . The decoding of each bit 

can be written as 1
1

ˆ( , , ) ( , )i n
i v i i i ig w B B X V B−

+  .Then we have [ ( , ( , , ))]n n n n
vE d X g w B Y  

1

1 ˆ= [ ( , ( , , ))]
n

i i i i i
i

E d X X V B Y
n =
∑ . Define an independent random variable K , which uniformly 

distributed on the set {1,..., }n . Assume that ( , )kU K U= , ( , )kV K V= , ( , )kX K X= , ( , )kF K F= , 
( , )kB K B= , ( , )kY K Y=  and follow the Markov chain ( , )U V X F B− − −  and ( , )U V F S Y− − − . 

Finally, we have 

1

ˆ[ ( , ( , , ))]
n

i i i i i
i

E d X X V B Y
=
∑

1

ˆ= [ ( , ( , , )) | ]
n

k k i i i
i

E d X X V B Y i k
=

=∑
1

ˆ= [ ( , ( , , ))]
n

k k i i i
k

E d X X V B Y ε
=

+∑  

1

ˆ= [ ( , ( , , ))]
n

k k i i i
k

E d X X V B Y ε
=

+∑ ˆ= [ ( , ( , , ))]i i iE d X X V B Y ε+ D ε ′≤ +  . 

Therefore, ˆ[ ( , ( , , ))]i i iE d X X V B Y D≤ ． 
Analysis of the information leakage rate.  
( )in R δ+ ( ; , )n n nI X Z E≥ ( ; , )n n nI X Z E≥  

( )
( ; , ) ( ; | , )

a
n n n n n n nI X Z F I X E Z F= +    

( ) ( | , , ) ( ; | , ) ( ; | , )n n n n n n n n n n n n nH X H X Z F B I X B Z F I X E Z F= − − +    
( )

1
1

1

1

{ ( ) ( | , , , ) [ ( | , , ) ( | , )]

( | , , ) ( | , )}

nb
n n n i n n n

i i i i i i i
i

n n i
i i i i

H X H X Z F B X H B Z F B H B X F

H E Z F E H E X F

−
+

=

−

≥ − − −

+ −

∑   

 

 
( )

1 1

1

1
1

[ ( ) ( | , , , , ) ( ; | ) ( | ) ( ; | ) ( | )

( | , , ) ( | , , )]

nc
n n n i i n

i i i i i i i i i i
i

n n n n n i
i i i

H X H X Z F B X E I X B F H B F I X E F H E F

H B Z F B H E Z F E

− −

=

−
+

≥ − − + + −

− +

∑     

 

 

det

( )
\ 1 \

1
1
[ ( ; , , ) ( ; | ) ( ; | ) ( , , ; | ) ( , , ; | )]

i

nd
n n n n i n i n i

i i i i i i i i i i i i i i
i

P

I X V F B I X B F I X E F I Z B F B F I Z E F E F−
+

=
=

= − + + −∑        



, 

where (a) follows from the definite action at the encoder, (b) follows from Fano’s inequality 
[18,Chapter 2.1] and the Markov chain \ 1

1( , , , , ) ( , ) ( , )n n n i n i
i i i i iF S X B E F X B E−
+ − − , (c) follows from 

the Markov chain 1 1 1 1( , , , ) ( , ) ( , )n n n i i i i
i i iX S F B F X E B− − − −− − , and (d) follows from the definition of iV

and the definite action at the encoder.  
By making the use of the Csiszár sum identity [18, Chapter 2.3], we have

1 1
1 11

( ; | , , ) ( ; | , , ) 0n i n n n n n n i
i i i ii

I B E F Z B I E B F Z E− −
+ +=

− =∑ . Then 

( )in R δ+ 1 \ 1 \
1 1

1
[ ( , , , ; | ) ( , , , ; | )]

n
n n i n i n n i n i

i i i i i i i
i

P I Z B E F B F I Z B E F E F− −
+ +

=

≥ + −∑      

( )

1
[ ( ; , , ) ( ; | ) ( ; | ) ( ; | ) ( ; | )]

na

i i i i i i i i i i i i i i i i
i

I X F V B I X B F I X E F I U B F I U E F
=

= − + + −∑          

( )

1
[ ( ; , , ) ( ; | , ) ( ; | , )]

nb

i i i i i i i i i i i i
i

I X F V B I X B U F I X E U F
=

= − +∑       , where (a) follows from the definition 

of iP and iU , and (b) follows from the Markov chain ( , ) ( , )i i i i i iU V X F B E− − − . This completes the 
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proof of converse. 

3. Random coding Scheme based on Double Binning Technique 

According to the system model proposed in the previous section, the random coding scheme based 
on Double Binning Technique is designed. In the following we provide details of the random coding 
scheme based on Double Binning Technique. 

Definition 4. Let nx be a sequence may take values from finite sets , the empirical probability 

distribution function of nx can be expressed as
|{ : = }|( | )=  n ii x xx x

n
π , x∈ . Then by the law of large 

numbers, ( | ) ( )nx x P xπ → in probability. For ( )X P x and (0,1)ε ∈ , define the set n-sequences
typicalε −  [18] as 

( ) { :| ( | ) ( ) | ( )},n n nT X x x x P x P x xε π ε− ≤ ∈ .                    (10) 

 

Figure. 2 Scheme Codebook. 

Codebook generation. The codebook generation process is shown in Fig.2. Fixing | | |F X V XF U VP P P
makes it reach the channel capacity. Randomly and independently pick ( ; )2nI X F sequences

( ), {1,..., 2 }n nF
f ff w w ∈  according to

n

i=1

( )= ( ( ))n
F i fp f P f w∏ . 

For each fw , randomly and independently generate ( ; | )2nI U X F sequences according to

|
=1

( )= ( | ( ))
n

n
U F i i f

i

p u P u f w∏ . Then distribute ( , )n
f uu w w uniformly at random into 2 XnR bin 1( )ur , 

{1,2,..., 2 }XnR
ur ∈ . Each bin consists of 2 XnI(U;X|F)-R codeword sequences.  

For each index tuple ( , )f uw w , randomly and independently generate ( ; | , )2nI V X U F sequences

( ; | , )( , , ), {1,..., 2 }n nI V X U F
f u v vv w w w w ∈ according to 

n

|
i=1

( )= ( | ( , ), ( ))n
V UF i i f u i fp v P v u w w f w∏ . Then 

distribute ( , , )n
f u vv w w w uniformly at random into 2 CnR Bins {1,2,..., 2 }CnR

vr ∈ , {1,2,..., 2 }CnR
vr ∈ . Each 

bin consists of ( ; | , )-2 CnI V X U F R codeword sequences. 
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Encoding. For a given source sequence nx , the encoder would keep looking for the ( )n
ff w which 

is jointly typical with nx since the number is more than ( ; )2nI X F . By the Covering Lemma in [18] 
Chapter 3.2, the eligible ( )n

ff w would exist. Choose one that is jointly typical with ( , )n nx f randomly 
and send the corresponding index fw to the decoder.  

Then the encoder would keep looking for a ( , )n
f uu w w which is jointly typical with ( , )n nx f  since 

the number is more than ( ; | )2nI U X F . By the Covering Lemma, the eligible ( , )n
f uu w w  would exist. 

Choose one index uw that in the corresponding bin randomly and send it to the decoder.  
Finally the encoder would keep looking for a ( , , )n

f u vv w w w  which is jointly typical with

( , , )n n nx f u since the number is more than ( ; | , )2nI V X U F . By the Covering Lemmain, the eligible
( , , )n

f u vv w w w  would exist. Choose one index vw that in the corresponding bin randomly and send it 
to the decoder.  

Decoding. According to the system model, Bob observes nB and receives nY from Alice. That is to 
say, Bob receives the indices ( , , )n

f u vY w w w  and side information nB . At the view of Zve, Zve 

receives the indices ( , , )n
f u vZ w w w    and side information nE . The decoder would keep looking for the 

unique nu which is jointly typical with ( , )n nb f in the bin 1( )ur since the number is less than ( ; | )2nI U B F . 
By the Packing Lemma in [18] Chapter 3.7, it will find the correct nu with high probability.  

The decoder would keep looking for the unique nv which is jointly typical with ( , , )n n nb f u  in the 
bin 2 ( )vr since the number is less than ( ; | , )2nI V B F U . By the Packing Lemma, it will find the correct nv
with high probability. Then we can calculate to get the ns . According to the ns and nf , we can 
reconstruct source and get the estimated source ˆnx . 

Errors and constraints. Symbol 'ξ ' denotes the event ''An error occurred during the encoding or 
decoding steps'', we consider its probability as follows:  

Record the typical error of side information as event 1ξ from properties of typical sequences, there 
exists a sequence lim 0nn

η
→∞

= makes the inequality 1( )= {( ) T ( )}n n n n n
nP P X ,F ,B ,E X,F,B,Eεξ η∉ ≤

work. Similarly, record the typical error of channels as event 2ξ . Its error probability is

2( )= {( ) T ( )}n n n n
nP P F ,Y ,Z F,Y,Zεξ η∉ ≤ .  

In the first step of encoding, it would find the sequence which is jointly typical with nf . Record 
the error of finding no sequence as event 3ξ . There exists upper bound of error probability lim 0nn

γ
→∞

→ , 

then we have 3( ) nP ξ γ≤ .  
Record the errors in the second and third steps of encoding as event 4ξ  and event 5ξ , 

respectively. There also exists upper bound of error probability lim 0nn
γ

→∞
→ , then we have 4( ) nP ξ γ≤  

and 5( ) nP ξ γ≤ .  
In the first step of decoding, it would find the sequence which is jointly typical with ( , )n nB f . 

Record the error of finding no sequence as event 6ξ . There exists upper bound of error probability 
lim 0nn

γ
→∞

→ , then we have 6( ) nP ξ γ≤ .  

Record the errors in the first and second steps of encoding as event 7ξ and event 8ξ . There also 
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exists upper bound of error probability lim 0nn
γ

→∞
→ , then we have 7( ) nP ξ γ≤ and 8( ) nP ξ γ≤ .  

Finally, the probability of event '' An error occurred during the encoding or decoding steps'' is 

( ) 2 6n nP ξ η γ= + .                              (11) 

4. Gaussian Noise Wiretap Channel based on the System Model 

In this section, we consider the Gaussian noise wiretap channel based on the system model which 
is shown in Fig.3. Gaussian additive noise power of the legitimate channel is represented as

1 (0, )yN P  , side information is represented as (0, )b bN P   and the gain of the channel 
component is represented as 1g . The power of the state information is represented as (0, )s sN P .  
Gaussian additive noise power of the wiretap channel is represented a 2 (0, )zN P  , side 
information is represented as (0, )e eN P   and the gain of the channel component is represented as

2g . Assume average power constraint P on F satisfies the inequality [ ]
n

2
i

i=1

1 E F P
n

≤∑ .According to 

the encoding scheme in this paper, the sequence Bob received is 

1 1( , , ) ( , , )n n
f u v f u vY w w w F w w w N= +g  ,                    (12) 

The sequence Zve received is 

2 2( , , ) ( , , )n n
f u v f u vZ w w w F w w w N= +   g .                     (13) 

 

Figure. 3 Gaussian noise wiretap channel based on the system model. 

Euclidean distance on   is used to measure distortion 2ˆ ˆ( , ) ( )d x x x x= − at Bob over the Gaussian 
wiretap channel. We introduce equivocation rate [19] ∆∈  to denotes the uncertainty of the 

information received by Eve. It can be expressed by the form 1 ( | , )=n n nH X Z E
n

δ∆ + . Considering 

that 22 /(2 )I eπ∆= denotes the minimum mean-square error of any estimator of source at Eve. Thus 

2
1 log (2 )
2

e Iπ∆ =  . It is worth mentioning that the information leakage 1 ( ; , )n n n
eI I X Z E

n
  
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1( ) ( | , )n n nH X H X Z E
n

= − ( )H X≤ −∆ 2
1 1log
2 I

=


. 

Definition 5. Tuple 3( )R,D,I +∈ is said to be achievable if, for any 0δ > and 1n ≥ , there exists 
an 1n ≥ code such that: 

2E[|| ( , ) || ]n n nX g B Y D δ− ≤ + ,                         (14) 

2
1 1( | ) log

2
n n nh X Z E I

n
δ≤ − ,                        (15) 

Theorem 2. Tuple 3( )R,D,I +∈ is said to be achievable if 

2
det var[ ]1 log

2 det var[ ]
FB

FV

VR
B

Γ ⋅
≥

Γ ⋅
,                          (16) 

det det
2 det var[ ]

XBY VXY

VBY

D
e XYπ

Γ ⋅ Γ
≥

⋅ Γ ⋅
,                         (17) 

det det det det
det det det

EXFX VX BF

BXVF EF

I
Γ ⋅ Γ ⋅ Γ ⋅ Γ

≤
Γ ⋅ Γ ⋅ Γ



  

 ,                    (18) 

Where = 0U andV denotes the auxiliary random variables on the finite set  . 

Proof. Analysis of the rate. From (5), we have ( ; | )= ( | )- ( | )I V F B h F B h F V 2
1 var[ | ]= log
2 var[ | ]

F B
F V

. 

With detvar[ | ]=
var[ ]

FBF B
B
Γ , detvar[ | ]=

var[ ]
FVF V

V
Γ . Thus, 2

det var[ ]1 log
2 det var[ ]

FB

FV

VR
B

Γ ⋅
≥

Γ ⋅
. 

Analysis of the Distortion. From the Theorem 8.6.6 in [20], we have 2 2h( )1ˆE( ) 2
2 e

XX X
π

− ≥ ⋅ . 

Then we have
2h( )2ˆE[ ( , ( , , ))]
2 e

X|VBY

d X X V B Y
π

≥ . Thus, from (6), we have
2h( )2
2 e

X|VBY

D
π

≥ .  

( ) ( | ) ( | ) ( | )h X |VBY h X BY h V XY h V BY= + − 2 2
det det1 var[ | ]var[ | ] 1= log log

2 var[ | ] 2 det var[ ]
XBY VXY

VBY

X BY V XY
V BY XY

Γ Γ
=

Γ
. 

Thus, 
det det

2 det var[ ]
XBY VXY

VBY

D
e XYπ

Γ ⋅ Γ
≥

⋅ Γ ⋅
. 

Analysis of the minimum mean square error of the estimated source. From (7), we have 
( ) ( ) ( )eI I X;V,F,B - I X;B |U,F + I X;E |U,F≥        

( ; ) ( ;| ) ( ; | ) ( ; | ) ( ; | )I X F I X F I X V F I X B F I X E F= + + − +       
[ ( ) ( | )] [ ( ) ( )] [ ( | ) ( | )] [ ( | ) ( | )] [ ( | ) ( | )]h X h F X h F h X h V F h V X h B F h B X h E F h E X= − + − + − − − + −        

Thus, 2 2
1 1 1 var[ ]var[ | ]var[ | ]var[ | ]log log
2 2 var[ | ]var[ | ]var[ | ]var[ | ]e

F V F B X E FI
I F X V X B F E X

= ≥
   

 



. Finally,  

det det det det
det det det

EXFX VX BF

BXVF EF

I
Γ ⋅ Γ ⋅ Γ ⋅ Γ

≤
Γ ⋅ Γ ⋅ Γ



  

 . This completes the proof. 

Next, assuming that all channels of the Gaussian wiretap channel based on the system model are 
independent and identically distributed fading channels, and obey the Gaussian distribution with 
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mean value of 0 and variance of 1. bP and eP  denote side information noise power of legitimate 
channel and wiretap channel, respectively. yP and zP denote Gaussian additive noise power of  
legitimate channel and wiretap channel. zP denotes the power of state information. Average power 
constraint by P . Choosing variablesU , V and F as follows:  

= 0U ,                                  (19) 

V X S Nγ= + − ,                              (20) 

( )F X S N Pα β γ= + − ,                           (21) 

Where (0,1)α ∈ , (0,1)β ∈ , 2 21γ α β= − − , (0, 1)N   , (0, )X P  . We have 

[( 1) ( 1) ]F X S V Pα β= − + − + ,                        (22) 

1 1( )V X S N Nγ= + − +g ,                           (23) 

1 1[( 1) ( 1) ]F X S V P Nα β= − + − + +g ,                     (24) 

2 2( )V X S N Nγ= + − + g ,                           (25) 

2 2[( 1) ( 1) ]F X S V P Nα β= − + − + + g .                    (26) 

Analysis of the rate.  

Because 2
1 var[ | ]log
2 var[ | ]

F BR
F V

≥ , detvar[ | ]=
var[ ]

FBF B
B
Γ , 

2 2 2( )

1
s

FB

b

P P P

P P P

α β γ α

α

 + +
Γ =   + + 

, we 

have 

var[ | ]F B
2 2 2[ ( ) (1 ) (1 )]=

1
b s b b

b

P P P P P P P P
P P

α β γ+ + + + + + +
+ +

.  

Similarly, because detvar[ | ]=
var[ ]

FVF V
V
Γ and

2 2 2 2

2 2

( ) ( )

( ) 1
s

FV

s s

P P P

P P P

α β γ α β γ

α β γ γ

 + + + +
Γ =   + + + + 

, we have 

var[ | ]F V
2 2 2 2 2

2

[( ) ( 1) ] ( 1)
1

s

s

P P P
P

α β γ β γ α
γ

− + − + −
=

+ +
. 

Analysis of the distortion. 
det det

2 det var[ ]
XBY VXY

VBY

D
e XYπ

Γ ⋅ Γ
≥

⋅ Γ ⋅
. From (17), (18) and (19), we have 

1 1 ( 1)

1 1

( 1)
XBY b

y

P

P P P

P P P P

α

α

α α

 −
 

Γ = + + 
  − + 

. 

From (19) and (20), we have 
2 2

2

1 + 1 ( )

1 1

( )

s y s

VXY

s y

P P P P

P

P P P P P

γ α β γ

α

α β γ α

 + + + +
 

Γ =  
  + + + 

. 
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From (17) and (for20), we have
2 2

2

1 + 1 ( )

1 1

( )

s y s

bVBY

s y

P P P P

P P P

P P P P P

γ α β γ

α

α β γ α

 + + + +
 

Γ = + + 
  + + + 

. 

Analysis of the minimum mean square error of the estimated source. 
det det det det

det det det
EXFX VX BF

BXVF EF

I
Γ ⋅ Γ ⋅ Γ ⋅ Γ

≤
Γ ⋅ Γ ⋅ Γ



  

 , 
2 2

2 2 2 2

1 ( )

( ) ( )
s s

VF
s s z

P P P

P P P P P

γ α β γ

α β γ α β γ

 + + + +
Γ =   + + + + + 
 

. 

Similarly, the determinants of the remaining matrices in the inequality are obtained respectively, 
so that I can be obtained.  

Considering the different Gaussian additive noise, the side information is also different, we 
consider different situations to analyze the rate, distortion rate and leakage rate of the scheme 
proposed in this paper. When sP is constant, there are four cases, as shown in Table.1. Then we discuss 
the situation of changing sP . 

Table 1 Cases where sP  is constant 

 b eP P<  
b eP P>  

y zP P<  eg. Case1 eg. Case2 
y zP P>  eg. Case3 eg. Case4 

 
Simplify formulas that containα , β andγ  by 2 2 21γ α β= − − . We have R , D and Iwithα and

β . Then we select the appropriate specific value to R , D and I . The unit of R , D and I  
bits/source-bit is omitted below. Considering the optimal trade-off among rate, distortion and 
minimum mean square error of source estimation, finding the optimal trade-off point is transformed 
into the optimization problem of maximizing the target value. Let ' weight ' be the target. weight  is 
shown below. Function atan()  is the arctangent function.  

atan( ) +1/atan( )+ atan( )weight R D I=                          (27) 

Case1. 0.5, 1y zP P= = , 0.5, 1b eP P= = , 1P = , 1sP = .  
Case2. 0.5, 1y zP P= = , 1, 0.5b eP P= = , 1P = , 1sP = .  
Case3. 1, 0.5y zP P= = , 0.5, 1b eP P= = , 1P = , 1sP = .  
Case4. 1, 0.5y zP P= = , 1, 0.5b eP P= = , 1P = , 1sP = .  
Fig.4 (a) depicts the graph of the target values with respect toα and β in case 1. The maximum 

target value is 194.0052 when 0.1α = , 0.9β = , 0.42γ = . Meanwhile, 0.7315R = , 0.0052D = , 
0.8368I = .  

Fig.4 (b) depicts the graph of the target values with respect to α and β  in case 2. The maximum 
target value is 46.2279 when 0.1α = , 0.9β = , 0.42γ = . Meanwhile, 0.5704R = , 0.0220D = , 

0.2571I = .  
Fig.4 (c) depicts the graph of the target values with respect to α and β in case 3. The maximum 

target value is 31.9783 when 0.9α = , 0.43β = , 0.071γ = . Meanwhile, 0.3031R = , 
0.0332D = , 0.4053I = .  
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Fig.4 (d) depicts the graph of the target values with respect to α and β in case 4. The maximum 
target value is 26.8701 when 0.9α = , 0.43β = , 0.071γ = . Meanwhile, 0.3585R = , 0.0400D = ,

0.2812I = . 

 
(a)                                  (b) 

 
(c)                                 (d) 

Figure. 4 The target values with respect to α and β  in 4 cases 

Finally, we consider the situation of changing sP . Fig.5 (a) depicts the graph of the target values 
with respect toα andβ when we decrease the value of sP  to 0.5 in case 1. The maximum target value 
is 6.0487 which also decreases when 0.9α = , 0.43β = , 0.071γ = . Meanwhile, 0.4899R = , 

0.0158D = , 0.2005I = . 
Fig.5 (b) depicts the graph of the target values with respect toα and β when we increase the value 

of sP  to 1.5 in case 1. The maximum target value is 3.7056 which decreases conversely when 
0.9α = , 0.1β = , 0.42γ = . Meanwhile, 0.3413R = , 0.0178D = , 0.3045I = . 
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(a)                                  (b) 

Figure. 5 Cases where the power of state informationin changes 

Based on the above experimental results, it is concluded as follows. In case 1, the target value 
reaches the maximum value of four cases. Meanwhile, the information leakage rate 0.1286eI = . 
Distortion also reaches the minimum value in several cases. It is clear that case 1 is optimal. In 
addition, the results obtained are higher than those in the secure lossy source transmission scheme 
proposed in [12] and the value of quantitative I is higher than that of the optimal scheme proposed 
in [19]. Rate and distortion are used to measure its reliability and quantitative I is used to measure 
its security. The comparison shows that the transmission model and its coding scheme proposed in 
this paper have certain security and reliability.  

However, the situation in case 1 can not be maintained at any time in practice, so other possible 
actual situations should be considered. Considering case 2, the results show that rate and quantitative
I both decrease while the distortion rate increases. The target values of case 3 and case 4 relatively 
decrease and the target value of case 4 is the smallest. Thus, case 4 has the worst situation. Through 
the analysis, it can be concluded that the influence of the noise power of the side information on rate 
constrained domain is smaller than that of Gaussian additive noise. Moreover, when the state 
information is changed under the optimal condition, all elements decrease. Thus, tough we have foud 
some rules, the optimal powers of side information and state information should be found to meet the 
maximum I , that is to say, to meet the minimum information leakage rate. 

5. Conclusions 

In this paper, we construct a secure lossy transmission model with side information and state 
information over wiretap channel. According to the system model proposed in this paper, we design 
a random coding scheme based on double binning technology. Then we derive the inner bound of 
rate, distortion and information leakage rate. Afterwards, the Gaussian noise wiretap channel based 
on the system model is analyzed. The simulation results show that the trade-off between rate, 
distortion and information leakage rate is optimal when Gaussian additive noise power of legitimate 
channel is lower than that of wiretap channel and the side information noise of legal receiver is smaller 
than that of eavesdropper. In this situation, the rate reaches 0.7315 bits / source bit, the distortion 
reaches 0.0052 bits / source bit and the information leakage rate reaches 0.1286 bits / source bit. 
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Compared with the data in other references, it is proved that the model and its random coding scheme 
are reliable and secure. 
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