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Abstract: In this paper, we consider a continuous flow ¢:R X X — X,where X is a
compact metric space,and we prove that for any positive integer N, ¢ is distributional
chaotic if and only if ¢ is distributional chaotic;¢ is Li-Yorke chaotic if and only if
@V is Li-Yorke chaotic.

1. Introduction

In 1975, Li and Yorke first gave the definition of chaos (see [1]) , the definition opened the door
on researching chaos, many scholars began to explore the chaos and give the different notions and
concepts of chaos .In 1994, Schweizer and Smital defined a new chaos named distributional chaos
(see[2,3]) . The scholar’s effort is to clarify the essence of the complexity of dynamical systems.
Nowadays to investigate the chaotic behavior of dynamical systems has become a hot subject.

In this paper, we main obtain the following results: Let (X,d) be a compact metric space with
metric d, write R = (—o0,4+). Let ¢:R X X - X be a continuous flow.

(1) For any integer N > 0, ¢ is distributional chaotic if and only if ¢" is distributional chaotic.

(2) For any integer N > 0, ¢ is Li-Yorke chaotic if and only if ¢V is Li-Yorke chaotic.

2. Preliminarier

Let (X,d) be a compact metric space with metric d, write R = (—oo, +0). We call ¢:R %
X — X isacontinuous flow if ¢ satisfies the following conditions£»

(1) ¢(0,x) =x,Vx € X.

(2) ¢(t,)):X - X,Vvt € R is homeomorphism.

(3) o(t,p(s,x)) =p(s+tx),Vs,t R

Given k € R, we define ¢*:R x X - X,where ¢*(t,x) = @(kt,x),Vx € X (refer to [4] for
more detalils) .

The product metric p on the product space X x X is defined by

P((x ), (X', y)) = max{d(x,x),d(y, y")}

for any(X’ y),(X,y)e X xX .
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Definitions 2.1 ¢ is said to be Li-Yorke chaotic if there exists an uncountable set D c X
such that for any pair (x,y) € D X D with x # vy,

(1) liminf,e d (@(t,x), 9(t,¥)) = 0; (2) limsup,_., d (¢ (¢ x), p(t,¥)) > 0.

Sometimes (x,y) is said to be a Li-Yorke pair of ¢.

Definitions 2.2  For any real number s > 0, x,y € X, let

(1) Fry(s) = liminf, oo f; Xjo0,5) (d(@(t, %), @(t, ¥)))dL.
= . t

(2) Fyy(s) = limsup;_,c %fo X051 (d(@(t,x), o(t,y)))dt.

Where x4(x) is 1if x € 4,and x,(x) is0if x & A. Obviously F,,(s) and F,,(s) are both
nondecreasing functions. We call (x,y) € X X X is a pair displaying distributional chaos if

(1) Ey,(a) =0, forsome a > 0; (2) Fy,(s) =1, forany s> 0.

¢ is said to display distributional chaotic if there exists an uncountable set D < X such that any
two different points in D is a pair displaying distributional chaos.

From the above definitions, we can see that any map displaying distributional chaos must be

Li-Yorke chaotic.

For simplicity, let
t

m@m%@=ﬁwmmw@Mw@w»a

1
F(p,x,y,5) = li{n inf? &(p,x,y,s).
_ 1
F(e,x,y,s) = limsup 7 &(@,x,y,s).
t—oo

3. Lemmas

In order to prove the main theorems , at first we show some lemmas.
Lemma 3.1 Let ¢:R XX — X be a continuous flow,x,y € X. For any positive integer
N > 0,and s > 0, we have
(1) If F(g,x,y,s) =0, thenF(¢",x,y,s) =0.
(2) If F(p,x,y,5) =1, thenF (", x,y,s) = 1.
Proof (1) If F(e,x,y,s) = 0,then there is an increasing sequence {t;} such that when i — oo,
1
lim—¢&.(p,x,y,5) =0.
i—o0 ti L
Put
ti
m; = N
then for each i,

Emi((pN,x,y, S) = gti((p' XV S)'
It follows that for i — oo,

1
.hm t_gmi((er X, y' S) = 0
11— 00 l
and further
. N N
hmt—emi((p ,x,v,5) =0.
{—00 i

This gives for i — oo,



limigm_ (", x,y,8)=0..
I1—00 mi !

Therefore
F(o",xy,5)=0.

(2) If F(ox, y’s)zl,then there is an increasing sequence ) such that when 1>

lim%gti (0. x,y,8)=1.

Let
5, (o.%, y,s):f{t:d(go(t,x),go(t,y))zs,Ost<ti}.

Adt:d (¢(t’ x).0(t y)) =s,0<t<t} denotes the Lebesque measure
{t:d(o(t.x).e(ty))2s0<t<t}.

where

Because for each t ,

1 1
t—é‘ti (. %Y, S)+{‘9ti (o, % y,5)=1.

We have
lim%&ti (¢.%,y,5)=0.
ti
m, =—.
Put N By an argument similar to that given above , we get that
limiém_ ((pN,X, y,s):O..
> mi !

and further

!Lrgmiigmi (0", % y,5)=1- !Lrgmiiémi (0", % y,5)=1.

This means that
Fe" xy,s)=1
Lemma 3.2 Let ?*R*X =X hea continuous flow, XY E€X | N >0, then the following
results hold:
N —
@) 1ffor >0 E@".%Y,8)=0 then there exists P> 0 suchthat E(@ %y, p)=0.
N A
@ 1f F@ %Y.8)=1 gora) s>0 then F@XV,P)=1 gy P>0

N _
Proof (1) If for 5>0,E(¢’ Xy y’s)_o,then there exists an increasing sequence {6} such
that when 1 =%,

limtlgti (", x,y,8)=0.



Since X is compact, and the map ¢:[0,N]xX — X is uniform continuous, hence for fixed
s>0  there exists P>0 such that for 4VEX and each t€[0NLd(o(t u).otv))=p
implies d(#(N,2),0(N,V))2$ g4 e have

NG, (9", %, Y,8) < 3y, (@, %, Y, P).
m. = Nt

Put i i* Then we have
1 1
—&, (9. %Y,P) <=5 (9", % Y,S).
m, t,
- 1 N
lim=¢ (¢",xy,8)=0
Noting that '~ § , we have

lim—z, (9,%,y, p) =0.
1—>0 mI 1
This shows that
F(p. %y, p)=0.
(2) Suppose Fle".%¥,8)=1 for all s>0. Fix P>0 since the map ?:[0N]xX =X
uniform continuous, then exists S>0 such that for “Y€X and each L€[ONI
— N
Aot )tV <P provided d(4v)<S. For such an s, F(@7:%¥:8)=1 ‘5o there exists an
increasing sequence {t} such than for 1>

lim%gti (", X, y,8)=1.

put ™ =Nb- \we can see that
Ne (0", x,y,8) <&, (0.X,, p).
then
1, 1
_gti (¢ 1 X, yi S) < _‘c"mi (§0, X, yi p)
t m
) o1 N
I — o, llm—gti((o X, Y,8)=1
For e _then further

lim—z, (%Y, p) =1
1—0 mi !

Therefore, forall P>0

IE((D’X’ y’ p) :l'
Lemma 33 Let ?-RXX=>X po 3 continuous flow, XYEX N>0 5 (XY) js 4

Li-Yorke pair of ?, then xy) is a Li-Yorke pair of 0" .

liminf d(o(t, X), o(t, y)) =0
Proof If (XY) is a Li-Yorke pair of ?, we have t>= (0t x),(t,y)

limsupd(ep(t, x), p(t, y)) > 0.

tow

Then there are two infinite sequences {Si},{ti}of R such that



limd(e(s;, X),@(s;,¥)) =0 and limd(e(t;, x), o(t;, y)) > 0.
s,i:i and ti:t—i. .
Put N N Hence, for I =% we have

limd (@" (5, %), 0" (51, ¥)) = limd(e(s;, x), (s, y)) = 0.
limd (@" (. ), 0" (&, y) = limd(e(t;, x), (t, ¥)) > 0.
This shows that (x,y) isa Li-Yorke pair of ¢".
Lemma 34 Let ?:R*X>X pe a continuous flow, XYEX N>0 5 (XY) js 4
Li-Yorke pair of 0" ,then (xy) is a Li-Yorke pair of .

Proof If (xy) is a Li-Yorke pair of ‘/’N,that is
liminf d(e" (t,X),0" (t,y))=0 and limsupd(e" (t,X),e" (t,y))>0.

t—oo

Then there are two infinite sequences {Si},{ti} of R such that
limd(e" (s;,%),¢"(s;,y)) =0 and limd(p" (t;,x),¢" (t,y)) > 0.

s, =SsN and t, =tN.

Put Therefore, when | — o0 ,

limd (e(s;, X), (s, ) = limd (p" (s, x), " (5, )) = 0.
limd(o(t;,x), o(t;, y)) =limd(e" (t.,x). " (t;, y)) > 0.
Thus (%Y) isa Li-Yorke pair of N>0.

4. Main results and proofs

Theorem 4.1 Let (X,d) be a compact metric space , # ‘R*xX = X e a continuous flow,

N
N >0 aninteger. Then # is distributional chaotic if and only if ¢ is distributional chaotic.
Proof By Lemma 3.1 and Lemma 3.2 we knows that for any N >0 ¢ s distributional

N
chaotic if and only if ¢ s distributional chaotic.
Theorem 4.2 Let (X,d) be a compact metric space , # ‘R X =X pe a continuous flow,

N
N>0 aninteger. Then ? is Li-Yorke chaotic if and only if ¢ is Li-Yorke chaotic.
Proof By Lemma 3.3 and Lemma 3.4 we knows that forany N >0 js Li-Yorke chaotic if

N
and only if #? is Li-Yorke chaotic.
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