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Abstract— Azeri (Azerbaijani) language is one of the more 

than 50 Turkic languages which it is a little studied language in 

terms of using the modern signal processing algorithms. This 

paper tackles the problem of Hidden Markov Models (HMMs) 

based next word prediction for this language based on Natural 

Language Processing (NLP) principles using Python high-level 

programming language. The software is included a small Azeri 

vocabulary database, the various Python libraries, a HMM model 

and a Web based interface. In this research, the database was 

constructed by a predictor parser which it was implemented for 

the first time for Azeri language. The database was concluded by 

the most general Azeri language words to introduce HMMs 

based generated word pairs. The Model was trained by 90% of 

the database, hence, predicting the next 5 words on the test data 

resulted 54% accuracy. 
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I.  INTRODUCTION 

Azeri (Azerbaijani) language is one of the more than 50 
Turkic languages [1] which it is a little studied language in 
terms of using modern signal processing algorithms and 
creation of modern language technology applications [2]. 
despite a huge number of researches on the other languages 

since the 80th years of the last century, Azeri language is a 
little investigated language, where all those researches 
studied applying Automatic Speech Recognition (ASR), 
Text-To-Speech (TTS) or Authorship Recognition (AR) 
algorithms on this language as “Dilmanc” project [2-6]. 
For the first time, the next word prediction for Azeri language 
has been mentioned in this research. Nowadays, one of the 
most important real-time social media’s necessaries is 
electronically conversation and communication. Reducing the 
time consumption for typing in the electronically 
communications by means of the next word prediction, would 
be very helpful for day to day usage. Hence, during the last 
decade, one of the highly discussed topics in Natural Language 
Processing research domain was the next word prediction for 
typing in the electronically communications [7]. 

Recurrent Neural Networks (RNNs) as Long Short-Term 
Memory Network (LSTM) model and Hidden Markov Models 
(HMMs) are used to perform prediction of the next word on a 
text sequence [7-11]. When the training data is not enough, and 
it is limited, HMMs can be used competitively on action 

modeling tasks in comparison with the discriminatively trained 
RNNs. HMMs should be used for the short-term action 
memory (early learning) cases or when quick reaction is 
required and RNNs should be used when enough data is 
available (long-term action memory). Also, using HMMs, the 
time complexity will be decreased compared to using RNNs as 
a LSTM network [12]. HMMs are easier to implementation, 
and still quite powerful. Therefore, it was decided to use 
HMMs in this research  

This paper tackled the problem of HMMs based next word 
prediction for Azeri language, based on NLP principles using 
Python programming language. The software was included a 
small Azeri vocabulary database where the amount of it was 
about 4 MB, the various Python libraries, a HMM model and a 
Web based interface. In this research, the database was 
constructed by a predictor parser which it was implemented for 
the first time for Azeri language. The database was concluded 
by the most general Azeri language words to introduce HMMs 
based generated word pairs. 

The structure of this paper is as follows. After the 
introduction section, it will be shortly reviewed HMMs and 
will be discussed the training on the model. Then, it will be 
explained the collection of the database issue. After introducing 
all parts of the software, some experimental results will be 
discussed. Finally, conclusions will be made in the last section. 

II. HMMS AND THE TRAINING ON THE MODEL 

The task of this research was to have a model which can 
predict the next word based on N previously written words. In 
this case, we set N to 2. The main reason to choose that specific 
number was to reduce the complexity of the model, since we 
were not dealing with enterprise level application and to reduce 
the overall computation cost. This very specific setting enabled 
us to scale once we found the way to generalize. To do this 
specific task we had several methods. The first one was to 
build a recurrent neural network as LSTM, to accomplish this 
task. Currently, quite a lot of enhancements have been spotted 
in this area. However, preprocessing and training an LSTM 
network would, first, be quite a challenging task with limited 
computation power we had. We could have used online 
services such as Google Colab, but these systems have all sorts 
of consistency problems. The second reason not to choose a 
neural network was that it would be an overkill for a small task. 
The next solution was to use Hidden Markov Models (HMM). 
We decided upon HMM, because it was easier to implement, 
and yet quite powerful. 
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HMM is a statistical Markov model in which the system 
being modeled is assumed to be a Markov process with 
unobservable states. HMM can be represented as the simplest 
dynamic Bayesian network. The mathematics behind the HMM 
were developed by L. E. Baum and coworkers. HMM works on 
previously observed states and tries to find a probabilistic 
relationship between given states [13]. 

In the design phase, we defined 3 tiers for our application. 
The first one was the Preprocessing tier (Fig. 1). It deals with 
raw text data.  Main functionalities of Preprocessing tier 
included reading raw text from file, removing all the special 
symbols like dash, quotes, exclamations, questions, etc. We 
removed all the extra spaces, URLs, email addresses, numbers, 
braces, parenthesis, etc. This step was called cleaning step.  
The next step in this tier was the transliterates step. Since we 
were reading the text from one Azeri text, some sources 
encoded the text in Cyrillic letters. It may not seem obvious at 
first, because the letter “a” in both cases were identical but 
their character codes were different. Hence, the space they 
capture was different. The string was separated into sentences, 
and sentences were separated into lists of the words. Those lists 
of words were input parameters to the model. Speaking of the 
model, the second tier was Markov Model. This was where the 
actual processing and predicting happens (Fig. 2). Markov 
Model preserves 3 databases to capture relations. While 
looping through the words of the sentences, it captures the 
relations between maximum 3 words sequences. 2 words and 
the next words were saved in a dictionary. Number of times 
those 2 words sequences occurred, it increased the probability 
of predicting the next word if these words were typed. Next, 
apart from those 3 words sequences, 2 words sequences were 
also captured. Those were one word followed by the next word 
type of sequences and probability of those were computed as 
well. We also saved the initial words of each sentence to have 
an initial prediction rather than waiting for the user to initiate 
the process. After processing’s done, the model is serialized 
and saved to reduce the time for computation which is already 
done just like the way all modern APIs follow. Markov Model 
tier exposes only 2 methods, one to get the trained instance, the 
next one is the method to predict next words. The final tier was 
the UI. This was where the user interacts with the system. It 
utilizes the next words method of the Markov Model (Fig. 3). 

III. COLLECTION OF THE DATABASE 

The software of this research was included a small Azeri 
vocabulary database where the amount of it was about 4 MB. it 
was constructed by a predictor parser. The database was 
concluded by the most general Azeri language words to 
introduce HMMs based generated word pairs. In the Step of 
Data Collection for HMM Model, Web Scraper was developed 
to obtain essential training data for the model, using Python 
and Selenium Web Browser Automation tool. The file 
“MAIN.PY” of the software, was responsible for establishing a 
connection with a website that is needed to scrape and perform 
required actions which it was concluded: 

• webdriver: is an object of Selenium tool which 
utilizes incognito mode in Google Chrome. To launch 
Chrome Browser, executable path of webdriver 
should be passed as a parameter to 
webdriver.Chrome() function. 

 
Fig. 1. The Preprocessing tier 

 

 
Fig. 2. The Predicting tier 

 

 
Fig. 3. The UI tier 

 

• browser: is a variable that holds value returned from 
webdriver.Chrome(). 

• browser.get(“URL”): method is used to get desired 
webpage. Subsequently the code in Fig. 4 is used to 
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determine whether a website is loaded successfully, 
by checking on XPATH value of an HTML attribute, 
within predefined time interval. 

• browser.find_element_by_xpath(“XPATH”).click(
): is used to automate a click action on an HTML 
element to exploit the content it holds. Then it is 
assigned to a new, post-variable. 

• post.text: Fetches text content of post object. 
 

 
Fig. 4. browser.get(“URL”) method 

IV. THE SOFTWARE 

The software was included a small Azeri vocabulary 
database where the amount of it was about 4 MB, the various 
Python libraries, a HMM model and a Web based interface 
(GUI). This software was included these 5 files: 

• Main.java 

• Main_VC.java 

• Main_Model.java 

• Main_View.css 

• EditorView.fxml 
 MAIN.JAVA file is a driver class for the project. It has 2 
functions as: 

• main (String[] args) - Launches the program. 

• start (Stage stage) - Loads the FXML file, sets the 
main view controller, Sets new scene (loads the 
content of the FXML to this scene), sets window’s 
resizability to false, and shows the main view stage. 

MAIN_VC.JAVA file is the view controller of the main 
scene. It connects EditorView.fxml to the Main_Model.java . 
This class implements the Initializable class. There are 3 
variables: 

• model - It is a private variable, its data type is 
Main_Model, and basically connects this class to 
Main_Model class. 

• listView - It is a private variable, its data type is 
ListView<String>, and it is connected to the 
EditorView.fxml via @FXML. 

• textArea - It is a private variable, its data type is 
TextArea, and it is connected to the EditorView.fxml 
via @FXML. 

This class has 3 functions: 

• Main_VC(Main_Model model) - It's a public 
function, it is a constructor, and sets a value the 
model. 

• onCellClicked() - It's a public function, its output is 
void, it is connected to the EditorView.fxml via 
@FXML, it is called when a cell of the listView is 
clicked via mouse, it gets text from the selected cell of 
the listView. If it is a ". ", the last character (which is " 
") is erased from the textArea. Sets the text of the 
textArea to the selected word from the listView. Adds 
an " " to the end. Then updates the listView. 

• initialize(URL url, ResourceBundle rb) - It's a public 
function, its output is void, is called when the scene is 
loaded, and adds an event listener to the textArea, so 
when the space key is pressed the listView is updated. 

MAIN_MODEL.JAVA file class has one variable: 

• hmm - It is a private variable, its data type is 
MarkovModel, and its initial value is a new instance 
of MarkovModel class. 

This class has 3 functions: 

• loadData(TextArea textArea, ListView listView) - It's 
a public function, its output is void, it gets the string 
value of the textArea, makes it lowercase, gets an 
array of 2 strings using getLastTwo function, gets an 
arrayList of predicted words using hmm's nextWord 
function, clears the listView, and gets top five 
predictions using getFive function and adds them to 
the listView. 

• getLastTwo(String input) - It's a public function, its 
output is an array of strings, and returns an array of 
the last to words of a given string. 

• getFive(List<String> list) - It's a public function, Its 
output is a list of strings, and it returns a list of first 5 
elements of the given list. 

MAINVIEW.CSS file is a stylesheet for the FXML file. It 
helps to modify the attributes of some elements that are not 
modifiable within "Scene Builder". It was used 3 main colors 
(lightest to darkest): #E6F0D9, #7A817B, and #151721. and 
the font is “Exo”. 

EDITORVIEW.FXML is a view file for the main scene 
that is created in Gluon's "Scene Builder". Our scene has a 
TextArea and a ListView. Also, on top there is a HBox with a 
Label inside. 

V. SOME EXPERIMENTAL RESULTS 

A GUI was implemented to test the algorithm. After writing 
an Azeri word in the “Text Area” part of the GUI, they will be 
predicted 5 the highest probability next words and will showed 
in the “List of The Top Predictions (max 5)” part of the GUI 
(Fig. 5). Using the GUI, the prediction accuracy was evaluated. 
The Model was trained by 90% of the database (Fig. 6). Then, 
predicting the next 5 words on the train data resulted 100% 
accuracy and predicting the next 5 word on the test data 
resulted 54% accuracy (Fig. 7). 

VI. CONCLUSIONS 

This paper tackled the problem of HMMs based next word 
prediction for Azeri (Azerbaijani) language, based on NLP 
principles using Python programming language. The software 
was included a small Azeri vocabulary database where the 
amount of it was about 4 MB, the various Python libraries, a 
HMM model and a Web based interface (GUI). In this 
research, the database was constructed by a predictor parser 
which it was implemented for the first time for Azeri 
(Azerbaijani) language. The database was concluded by the 
most general Azeri language words to introduce HMMs based 
generated word pairs. The Model was trained by 90% of the 
database, hence, predicting the next 5 words on the test data 
resulted 54% accuracy. 
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Fig. 5. The implemented GUI to test the algorithm 

 

 

Fig. 6. Training of the model by 90% of the database 

 

 

Fig. 7. Predicting the next 5 words on the test data 
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