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Abstract: We first give alternative expressions of some generalized countably compact 
spaces such as quasi- spaces, quasi-Nagata spaces, M#-spaces and wM-spaces with g-
functions. Then by means of these expressions, we present some characterizations of the 
corresponding spaces with real-valued functions. 

1. Introduction 

Throughout, a space always means a Hausdorff topological space unless otherwise stated. Let X be 
a space. Denote by CX (SX) the family of all compact (sequentially compact) subsets of X. τ and τ 
c denote the topology of X and the families of all closed subsets of X, respectively [1]. F0(X) 
denotes the family of all decreasing sequences of closed subsets of X with empty intersection. The 
set of all positive integers is denoted by N while ⟨xn⟩ denotes a sequence. A real-valued function f 
on a space X is called lower (upper) semi-continuous [1] if for any real number r, the set {x ∈ X : 
f(x) > r} ({x ∈ X : f(x) < r}) is open. We write L(X) (U(X)) for the set of all lower (upper) semi-
continuous functions from X into the unit interval [0, 1]. A g-function for a space X is a map g : N 
× X → τ such that for each x ∈ X and n ∈ N, x ∈ g(n, x) and g(n + 1, x) ⊂ g(n, x). For a subset A 
⊂ X , let g(n,A) = ∪{g(n, x) : x ∈ A}. Consider the following conditions. 

(q) If xn ∈ g(n, x) for all n ∈ N, then ⟨xn⟩ has a cluster point. (quasi-γ) If xn ∈ g(n, yn) for 
all n ∈ N and yn → x, then ⟨xn⟩ has a cluster point[2]. 

(β) If x ∈ g(n, xn) for all n ∈ N, then ⟨xn⟩ has a cluster point. (quasi-Nagata) If yn ∈ g(n, xn) 
for all n ∈ N and yn → x, then ⟨xn⟩ has a cluster point. (kβ) For each K ∈ CX, if K ∩ g(n, 
xn) ̸= ∅ for all n ∈ N, then ⟨xn⟩ has a cluster point. (wN) If g(n, x) ∩ g(n, xn) ̸= ∅ for all n ∈ N, 
then ⟨xn⟩ has a cluster point. A space that has a g-function satisfying condition (q) ((quasi-γ), (β), 
(quasi-Nagata), (kβ), (wN)) is called a q-space [2] (quasi-γ space , β-space [4], quasi-Nagata space, 
kβ-space, wN-space). The g-function satisfying condition (q) is called a q-function. The others are 
defined analogously. β-spaces were also called monotonically countably metacompact spaces in . 
kβ-spaces were also called monotonically countably mesocompact spacesand k- MCM spaces. 
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It is known that a space X is countably compact if and only if every sequence in X has a cluster 
point. Thus for a countably compact space X, if we let g(n, x) = X for each x ∈ X and n ∈ N, then 
we get a g-function for X which clearly satisfies all the conditions listed above. Thus all these 
spaces can be viewed as generalizations of countably compact spaces. On the other hand, they are 
also natural generalizations of some corresponding generalized metric spaces. Actually, if we 
replace ‘⟨xn⟩ has a cluster point’ in condition (q) ((quasi-γ), (β), (quasi-Nagata), (wN)) with ‘x is 
a cluster point of ⟨xn⟩’, then we get the g-function for first countable spaces (γ-spaces, semi-
stratifiable spaces, k-semi-stratifiable spaces, Nagata-spaces). In [11], it was shown that most of 
generalized metric spaces such as γ-spaces, Nagata-spaces, semi-metrizable spaces and quasi-
metrizable spaces can be characterized with real-valued functions. A natural question is that, as 
generalizations of the corresponding generalized metric spaces, whether the generalized countably 
compact spaces mentioned above can also be characterized with real-valued functions. With the 
question in mind, in this paper, we shall show that many classes of generalized countably compact 
spaces such as the spaces mentioned above as well as M#-spaces, wM-spaces can be characterized 
analogously to the corresponding generalized metric spaces. 

2. Alternative expressions of some corresponding spaces 

In this section, we give alternative expressions of some corresponding spaces with g-functions 
which will be used in Section 3. 

Lemma 2.1 If ⟨Fn⟩ ∈ F0(X) and xn ∈ Fn for each n ∈ N, then ⟨xn⟩ has no cluster point. 
Proof Since ⟨Fn⟩ is decreasing and xn ∈ Fn, we have that {xm : m ≥ n} ⊂ Fn for each n ∈ N. 
Thus {xm : m ≥ n} ⊂ Fn because Fn is closed. It follows that ∩ n∈N {xm : m ≥ n} ⊂[3] 

∩ n∈N Fn =∅. This implies that ⟨xn⟩ has no cluster point.   Proposition 2.2 g is a q-function 
for a space X if and only if for each ⟨Fn⟩ ∈ F0(X) and x ∈ X, Fn ∩ g(n, x) = ∅ for some n ∈ N. 

Proof  Let g be a q-function for X, ⟨Fn⟩ ∈ F0(X) and x ∈ X. Assume that Fn ∩ g(n, x) ̸= ∅ 
for each n ∈ N and choose xn ∈ Fn ∩ g(n, x). Since g is a q-function, ⟨xn⟩ has a cluster point, a 
contradiction to Lemma 2.1. Conversely, suppose that xn ∈ g(n, x) and let Fn = {xm : m ≥ n} for 
each n ∈ N. Then Fn ∩ g(n, x) ̸= ∅ for each n ∈ N. By the condition, ∩ n∈N Fn ̸= ∅ which 
implies that ⟨xn⟩ has a cluster point. Therefore, g is a q-function 

Proposition 2.3 For a space X, the following are equivalent. (a) g is a quasi-γ function for X. (b) 
For each S ∈ SX, if xn ∈ g(n, S) for each n ∈ N, then ⟨xn⟩ has a cluster point. (c) For each S ∈ 
SX and ⟨Fn⟩ ∈ F0(X), Fn ∩ g(n, S) = ∅ for some n ∈ N. 

Proof (a) ⇒ (b). Let g be a quasi-γ function for X and S ∈ SX. Suppose that xn ∈ g(n, S) for 
each n ∈ N. Then there exists yn ∈ S such that xn ∈ g(n, yn) for each n ∈ N. Since S ∈ SX, 
⟨yn⟩ has a convergent subsequence ⟨ynk⟩ which clearly also converges in X. Since xnk∈ g(k, 
ynk ) and g is a quasi-γ function, ⟨xnk⟩ has a cluster point which is clearly also a cluster point of 
⟨xn⟩.  

(b) ⇒ (c). Let g be the g-function in (b) and ⟨Fn⟩ ∈ F0(X). Let S ∈ SX and suppose that Fn 
∩ g(n, S) ̸= ∅ for each n ∈ N. Choose xn ∈ Fn ∩ g(n, S) for each n ∈ N. By (b), ⟨xn⟩ has a 
cluster point, a contradiction to Lemma 2.1. 

(c) ⇒ (a). Let g be the g-function in (c). Suppose that xn ∈ g(n, yn) for all n ∈ N and yn → x. 
Let S = {yn : n ∈ N} ∪ {x} and let Fn = {xm : m ≥ n} for each n ∈ N. Then S ∈ SX and Fn ∩ 
g(n, S) ̸= ∅ for each n ∈ N. By (c), ∩ n∈N Fn ̸= ∅ which implies that ⟨xn⟩ has a cluster point. 
Therefore, g is a quasi-γ function. 
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Proposition 2.4 g is a β-function for a space X if and only if for each ⟨Fn⟩ ∈ F0(X) and x ∈ X, 
x /∈ g(n, Fn) for some n ∈ N. 

Proof  Similar to the proof of Proposition 2.2. 
Proposition 2.5 For a space X, the following are equivalent. 
(a) g is a quasi-Nagata function for X. 
(b) For each S ∈ SX, if S ∩ g(n, xn) ̸= ∅ for each n ∈ N, then ⟨xn⟩ has a cluster point. 
(c) For each S ∈ SX and ⟨Fn⟩ ∈ F0(X), S ∩ g(n, Fn) = ∅ for some n ∈ N. 
Proof Similar to the proof of Proposition 2.3.   
Since kβ-function can be obtained by replacing S ∈ SX in (b) of Proposition 2.5 with K ∈ CX, 

with a similar argument, we have the following. 
Proposition 2.6 g is a kβ-function for a space X if and only if for each K ∈ CX and ⟨Fn⟩ ∈ 

F0(X), K ∩ g(n, Fn) = ∅ for some n ∈ N. 
A space X is called an M#-space [12] if there exists a sequence {Fn}n∈N of closure preserving 

closed covers of X such that if xn ∈ st(x,Fn) for each n ∈ N, then ⟨xn⟩ has a cluster point. 
Proposition 2.7 For a space X, the following are equivalent. 
(a) X is an M#-space. 
(b) There exists a g-function g for X such that (1) if g(n, x) ∩ g(n, xn) ̸= ∅ for all n ∈ N, then 

⟨xn⟩ has a cluster point; (2) if y ∈ g(n, x), then g(n, y) ⊂ g(n, x). 
(c) There exists a g-function g for X such that (1) for each ⟨Fn⟩ ∈ F0(X) and x ∈ X, g(n, x) 

∩ g(n, Fn) = ∅ for some n ∈ N; (2) if y ∈ g(n, x), then g(n, y) ⊂ g(n, x). 
Proof (a) ⇒ (b). Let { Fn} n∈N be a sequence of closure preserving closed covers of X satisfying 

the condition of an M#-space. For each x ∈ X and n ∈ N, put h(n, x) = X \ ∪{F ∈ Fn : x /∈F} 
and g(n, x) = ∩i≤nh(i, x). Then g is a g-function for X and it is clear that g satisfies (2). Suppose 
that yn ∈ g(n, x) ∩ g(n, xn) ⊂ h(n, x) ∩ h(n, xn) for each n ∈ N. Since Fn covers X, there is Fn 
∈ Fn such that yn ∈ Fn. Thus x, xn ∈ Fn from which it follows that xn ∈ st(x,Fn) for each n ∈ 
N. Therefore, ⟨xn⟩ has a cluster point. 

(b) ⇒ (c). Let g be the g-function in (b), ⟨Fn⟩ ∈ F0(X) and x ∈ X. Assume that g(n, x) ∩ g(n, 
Fn) ̸= ∅ for each n ∈ N. Then there exists xn ∈ Fn such that g(n, x) ∩ g(n, xn) ̸= ∅ for each n ∈ 
N. By (1) of (b), ⟨xn⟩ has a cluster point, a contradiction to Lemma 2.1. 

(c) ⇒ (b). Let g be the g-function in (c). Suppose that g(n, x) ∩ g(n, xn) ̸= ∅ for all n ∈ N. Let 
Fn = {xm : m ≥ n} for each n ∈ N. Then g(n, x) ∩ g(n, Fn) ̸= ∅ for each n ∈ N. Thus ∩ n∈N 
Fn ̸= ∅ which implies that ⟨xn⟩ has a cluster point. 

(b) ⇒ (a). Let g be the g-function in (b). For each x ∈ X and n ∈ N, let Gn(x) = ∪{g(n, y) :y ∈ 
X, x /∈g(n, y)}. For each n ∈ N, let Fn = {X \ Gn(x) : x ∈ X}. Then Fn is a closed cover of X. 

To show that Fn is closure preserving, let A ⊂ X . W e show that ∩{Gn(x) : x ∈ A} is open. Let 
y ∈ ∩{Gn(x) : x ∈ A}. Then for each x ∈ A, y ∈ Gn(x) and thus there exists z ∈ X such that y 
∈ g(n, z) and x /∈ g(n, z). By (2) of (b), we have that g(n, y) ⊂ g(n, z) and thus x /∈ g(n, y). This 
implies that g(n, y) ⊂ Gn(x) and thus g(n, y) ⊂ ∩{Gn(x) : x ∈ A}. It follows that ∩{Gn(x) : x ∈ 
A} is open. Therefore ∪{X \Gn(x) : x ∈ A} is closed which implies that Fn is closure preserving. 

Now, suppose that xn ∈ st(x,Fn) for each n ∈ N. Then there exists yn ∈ X such that xn, x ∈ X 
\ Gn(yn). Thus for each y ∈ X, if yn /∈g(n, y) then xn, x /∈ g(n, y). It follows that yn ∈ g(n, xn) 
and yn ∈ g(n, x) and thus g(n, x) ∩ g(n, xn) ̸= ∅. By (1) of (b), ⟨xn⟩ has a cluster point. 
Therefore X is an M#-space. 
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A cover P of a space X is called a quasi-(mod k)-network [13] if there is a closed cover H of X 
by countably compact subsets such that whenever H ⊂ U with H ∈ H and U ∈ τ , then H ⊂ P ⊂ U 

for some P ∈ P. X is called a Σ#-space [13] if it has a σ-closure-preserving closed quasi-(mod k)-
network. 

Lemma 2.8  X is a Σ#-space if and only if there exists a g-function g for X such that (1) if x ∈ 
g(n, xn) for all n ∈ N, then ⟨xn⟩ has a cluster point; (2) if y ∈ g(n, x), then g(n, y) ⊂ g(n, x). The 
g-function in the above lemma is called a Σ#-function. We see that a Σ#-function is precisely a β-
function which satisfies an additional condition. Thus by Proposition 2.4, we have the following. 

Proposition 2.9 g is a Σ#-function for X if and only if (1) for each ⟨Fn⟩ ∈ F0(X) and x ∈ X, x 
/∈ g(n, Fn) for some n ∈ N; (2) y ∈ g(n, x), then g(n, y) ⊂ g(n, x). 

A space X is called a wM-space [15] if there exists a sequence {Gn}n∈N of open covers of X 
such that if xn ∈ st2(x, Gn) for each n ∈ N, then ⟨xn⟩ has a cluster point. Notice that without 
loss of generality, we may assume that Gn+1 ≺ Gn for each n ∈ N. 

Proposition 2.10 For a space X, the following are equivalent. 
(a) X is a wM-space. 
(b) There exists a g-function g for X such that (1) if g(n, x)∩g(n, xn) ̸= ∅ for all n ∈ N, then 

⟨xn⟩ has a cluster point; (2) for each x, y ∈ X and n ∈ N, y ∈ g(n, x) if and only if x ∈ g(n, y). 
(c) There exists a g-function g for X such that (1) for each ⟨Fn⟩ ∈ F0(X) and x ∈ X, g(n, x) 

∩ g(n, Fn) = ∅ for some n ∈ N; (2) for each x, y ∈ X and n ∈ N, y ∈ g(n, x) if and only if x ∈ 
g(n, y). 

(d) There exists a g-function g for X such that (1) for each ⟨Fn⟩ ∈ F0(X) and x ∈ X, x /∈ g(n, 
Fn) for some n ∈ N; (2) for each x, y ∈ X and n ∈ N, y ∈ g(n, x) if and only if x ∈ g(n, y). 

Proof (a) ⇒ (b). Let { Gn} n∈N be a sequence of open covers of X satisfying the condition of a 
wM-space and Gn+1 ≺ Gn for each n ∈ N. For each x ∈ X and n ∈ N, let g(n, x) = st(x, Gn). 
Then g is a g-function for X and it is clear that g satisfies (2). Suppose that g(n, x)∩g(n, xn) ̸= ∅ 
for each n ∈ N. Then xn ∈ st2(x, Gn) for each n ∈ N and thus ⟨xn⟩ has a cluster point. 

(b) ⇒ (c). is similar to the proof of (b) ⇒ (c) of Proposition 2.7. 
(c) ⇒ (d). is clear. 
(d) ⇒ (a). Let g be the g-function in (d). For each n ∈ N, let Gn = {g(n, x), x ∈ X}. Then {Gn}n

∈N is a sequences of open covers of X. 
Claim 1 If xn ∈ g(n, x) for all n ∈ N, then ⟨xn⟩ has a cluster point. 
Proof of Claim 1 For each n ∈ N, let Fn = {xm : m ≥ n}. Assume that ⟨xn⟩ has no cluster 

point. Then ⟨Fn⟩ ∈ F0(X). By (1), x /∈ g(k, Fk) ⊃ g(k, xk) for some k ∈ N. By (2), xk /∈ g(k, 
x), a contradiction. 

Claim 2 If g(n, x) ∩ g(n, xn) ̸= ∅ for all n ∈ N, then ⟨xn⟩ has a cluster point. 
Proof of Claim 2 Choose yn ∈ g(n, x) ∩ g(n, xn) for each n ∈ N. By Claim 1, ⟨yn⟩ has a 

cluster point p. For each n ∈ N, let Fn = {xm : m ≥ n}. Assume that ⟨xn⟩ has no cluster point. 
Then ⟨Fn⟩ ∈ F0(X). By (1), p /∈ g(j, Fj) for some j ∈ N. Since p is a cluster point of ⟨yn⟩, 
there exists i ≥ j such that yi /∈ g(j, Fj) ⊃ g(i, Fi) ⊃ g(i, xi), a contradiction. 

Now, suppose that xn ∈ st2(x, Gn) for each n ∈ N. Then there exist yn, zn,wn ∈ X such that x 
∈ g(n, zn), wn ∈ g(n, yn) ∩ g(n, zn) and xn ∈ g(n, yn) for each n ∈ N. By (2), zn ∈ g(n, x) and 
zn ∈ g(n,wn) from which it follows that g(n, x) ∩ g(n,wn) ̸= ∅ for all n ∈ N. By Claim 2, ⟨wn⟩ 
has a cluster point p. Then there is a subsequence ⟨wnk⟩ of ⟨wn⟩ such that wnk∈ g(k, p) for all 
k ∈ N. Since wnk∈ g(k, ynk ), we have that g(k, p) ∩ g(k, ynk ) ̸= ∅ for all k ∈ N. By Claim 2, 
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⟨ynk⟩ has a cluster point q which is also a cluster point of ⟨yn⟩. Then there is a 
subsequence⟨ymj⟩ of ⟨yn⟩ such that ymj∈ g(j, q) for all j ∈ N. Since xn ∈ g(n, yn) for each n 
∈ N, by (2),ymj∈ g(j, xmj ) for each j ∈ N. It follows that g(j, q) ∩ g(j, xmj ) ̸= ∅ for all j ∈ N. 
By Claim 2,⟨xmj⟩ has a cluster point which is also a cluster point of ⟨xn⟩. Therefore X is a wM-
space. 

3. Conclusions    

In this section, we present characterizations of some generalized countably compact spaces such as 
q-spaces, quasi-Nagata spaces, quasi-γ spaces, wN-spaces, M#-spaces and wM-spaces with real-
valued functions. To shorten the expressions of the corresponding results, we introduce the 
following notations. 

Let A be a family of subsets of X, F a family of real-valued functions on X and f : A → F. For A 
∈ A, we write fA instead of f(A). For a singleton {x}, we write fx instead of f{x}. Consider the 
following conditions. 

Theorem 3.1 X is a q-space if and only if for each x ∈ X, there exists fx ∈ U(X) satisfying 
(c{x}) and (i{x}⟨Fn⟩). 

Proof Let g be the g-function in Proposition 2.2. For each x ∈ X, let  
 Then fx ∈ U(X) and fx(x) = 0. 
Let ⟨Fn⟩ ∈ F0(X). By Proposition 2.2, there is m ∈ N such that Fm ∩ g(n, x) = ∅ for all n > 

m. Thus for each y ∈ Fm,  
 Conversely, for each x ∈ X and n ∈ N, let g(n, x) = {y ∈ X : fx(y) < 1n}. Then g(n, x)is open, 

x ∈ g(n, x) and g(n + 1, x) ⊂ g(n, x) which implies that g is a g-function for X. Let⟨Fn⟩ ∈ F0(X) 
and x ∈ X. By (i{x}⟨Fn⟩), there exists m ∈ N such that inf{fx(y) : y ∈ Fm} > 0.Then there 
exists k ≥ m such that fx(y) > 1k for each y ∈ Fm. Thus for each y ∈ Fk, fx(y) > 1kwhich implies 
that Fk ∩ g(k, x) = ∅. By Proposition 2.2, X is a q-space. 

Theorem 3.2 X is a quasi-γ space if and only if for each S ∈ SX, there exists fS ∈ U(X) 
satisfying (cS), (mS) and (iS⟨Fn⟩). 

Proof Let g be the g-function in Proposition 2.3 (c). For each S ∈ SX, let: 
 ,Then fS ∈ U(X) satisfies (cS) and (mS). 
Theorem 3.3 X is a β-space if and only if for each F ∈ τ c, there exists fF ∈ U(X) satisfying 

(cF ), (mF ) and (i⟨Fn⟩{x}). 
Proof Let g be the g-function in Proposition 2.4. Conversely, define a g-function g for X by 

letting g(n, x) = {y ∈ X : fx(y) < 1n} for eachx ∈ X and n ∈ N. Let ⟨Fn⟩ ∈ F0(X) and x ∈ X. 
By (i⟨Fn⟩{x}), there exist m ∈ N and k ≥ msuch that fFm(x) > 1k . Thus for each y ∈ Fk, fy(x) 
≥ fFk (x) ≥ fFm(x) > 1k which implies thatx /∈g(k, Fk). By Proposition 2.4, X is a β-space. 

Theorem 3.4 X is a quasi-Nagata space if and only if for each F ∈ τ c, there exists fF ∈ U(X) 
satisfying (cF ), (mF ) and (i⟨Fn⟩S) with S ∈ SX. 

Conversely, define a g-function g for X by letting g(n, x) = {y ∈ X : fx(y) < 1n} for eachx ∈ X 
and n ∈ N. Let ⟨Fn⟩ ∈ F0(X) and S ∈ SX. By (i⟨Fn⟩S), there exist m ∈ N and k ≥ m。 

such that fFm(x) > 1k for each x ∈ S. Thus for each y ∈ Fk, fy(x) ≥ fFk (x) ≥ fFm(x) > 1k 
which implies that x /∈g(k, Fk). It follows that S ∩ g(k, Fk) = ∅. By Proposition 2.5 (c), X is 
aquasi-Nagata space. 

Theorem 3.5 X is a kβ-space if and only if for each F ∈ τ c, there exists fF ∈ U(X) satisfying 
(cF ), (mF ) and (i⟨Fn⟩K) with K ∈ CX. 
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