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Abstract: The Quantile based entropy measure own a few precise properties than its
distribution function technique. In this article, the idea of quantile based Bilal’s and Baig’s
uncertainty measure is prolonged for order statistics for residual and past lifetimes and
have a look at their properties, this two parametric entropy measure characterizes the
distribution characteristic uniquely. A few characterization results of generalized residual
entropy of order statistics and monotonicity property is likewise mentioned.

1. Introduction

An outstanding and significant idea in the field of information theory is the estimation of
uncertainty or for the most part known as Shannon's entropy was initially dictated by Claude
Shannon in [20]. These days, there is an incredible attraction of this measure among the scientists to
generally apply it in various sciences like material science, computer sciences, probability,
communication theory and reliability. let W be a random variable (r.v.) having an absolutely
continuous cdf F(w) and pdf f(w), then the basic uncertainty measure of W is defined as

H W)= (1)~ -] £ (wtog 1 (w)w

1)

H(w) is commonly referred as to the Shannon information measure of W or Shannon entropy. There
is now a huge literature devoted to the applications, generalizations and properties of Shannon
measure of uncertainty refer to Ref. [1]. A two parametric extension of Shannon entropy measure is
given by Bilal and Baig ref to Ref. [3] is given as

0 b
H a*’(w):ﬁ[j f Za(w)dw—lJ %< a<b, b>1
0

2)
Particular cases,

Put a=1, the measure (2) reduces to Mathai-Haubold
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when b —1, the measure (2) reduces to Shannon entropy as given in (1)

All of the theoretical investigations and applications the use of these facts measures are based
totally on the distribution feature, however might not be suitable in conditions in which the
distribution isn't always analytically tractable. an alternative technique to the examine is to apply
the Quantile functions (QFS) which are given as follows

o(y)=F(y)=inflw|F(w)>y} O0<y<1
3)
The Quantile functions utilized in carried out works inclusive of numerous types of lambda
distribution Van Staden and Loots [25], the Power-Pareto distribution Hankin and lee [12],
Govindrajulu distribution do not have tractable distribution functions. New models and
characterizations that are unresolvable within the distribution function approach can be resolved

with the help of quantile feature we talk over with to Gilchrist [10]. Nair and Sankaran [18] and
Nair et. al [19].

Sunoj and Sankaran [22] have considered the Quantile version of Shannon entropy and its
residual form which are defined as

H = j.log p(x)dx
@
and H(y) = HOW: ) ool )+ - 3)" o )
® y

respectively where p(x)=diygo(y) is the Quantile density function. Defining the density quantile

function by fe(y)= f(e(y))and the quantile density function by p(x),we have

px) f(p(y))=1
(6)
A quantile based entropy of order statistics and its dynamic shape is proposed by way of sunoj et al.
[21]. Recently, Kumar and Rekha [16] and khayal and Tripathy [13] studied the properties of
quantile based dynamic Tsallis entropy and order statistics in image and signal processing. We try

to extend the concept of quantile based Generalized entropy using order statistics and study it for
some lifetime distributions.

2. Generalized Two Parametric Quantile Based Entropy (GTPQBE) of W,.,,:

Analogous to (2), a GTPE for the i" order statistics W, is defined as

a,b 1 K 2_9 b
=TT im a - - L b> .
HWi;n a(b—a)u fin (W)dW 1} 2<a<b b>1 ( )

where f,, (w)is the pdf of the i" order statistics is given by

F(w) Y - F(w)"" £ (w)
£l




here B(i,n—i+1) is the beta function with parameters i and (n—i+1) for details refer to Refs [2].
From (3), we have F(p(y))=vy, then pdf of the i" order statistics becomes

fin(¥) = fin((y) = )(y)("l) (@-y)" P £ ((o(y))

B(i,n—i+1
~B(, nl_ i+1) W -y ﬁ
_9ily)

ply)

here g;(y) follow the pdf of beta distribution with unknown parameters i and (n—i+1), now using
(3), the corresponding GTPQBE of w;,,, is defined as

Hi? = HeP (oY) = ——— b ) [J' f,nz‘g )—1} g<a<b, b>1 i" order statistics

b

= (bl_ a) [i (gi (3/))27g (/0()/))571 dy- 1}

(8)
The measure (8) is GTPQBE for i™ order statistics, whena=1, (8) reduces to Methai-Haubold
entropy

1

HE, ﬁ[ [(@ ) (ely) y—1] . (9)

when b1, (9) reduces to Shannon entropy of i" order statistics studied by Sunoj et.al [21].

1

W =—jgi(y)log(%Jd y .

0

Example 2.1: If W is a r.v. following the Govindrajulu’s [11] distribution that does not have any
closed form expressions for distribution and density function, the QFS and quantile density function
are given respectively by

oly)= r{(s +1)y° —s y(s*l)} and p(y)=rs(s+1)@-y)y** 0<y<lr,s>0

Thus GTPQBE of i order statistics for Govindrajulu’s distribution is given as

1
i~ o ) oy
0

() 2yl b

= (rs(s +1)1- y)ys‘l)?ld y—-1

alb-a) B(i,n—i+1)(2‘§]

'_\
O




e s

- -1
B(i,n—i+1)[2_5j

__ 1 (rs(s+

a(b-a)

Example 2.2: If W is a r.v. follows the uniform distribution over (rs) r<s , then its QFS and
quantile density function are given respectively by

py)=r+(s—r)y and p(y)=(s-r)
Thus GTPQBE of i order statistics for uniform distribution is given as
b

Hyio = ;)@(gi () (oly)atdy —1J

alb-a

3. Generalized Two Parametric Quantile Based Divergence Measure:

Divergence measure plays an important role in measuring the distance between two
probability distribution functions. Let X and Y be two non-negative r.vs. With density functions f

and g and survival functions F and G respectively. Then % could be considered as a measure
divergence of g from f in the sense that when % is far from unity, the difference in the distributions

is large. One can define a divergence measure of g from f as

o0

Hw(x;y)zjf(x)w(%jdx

0 gix

(10)
For different choice of @ in (10), we get the following divergence measure of g from f .

2-

f(x)(%j dx-1[, %<a<b,b21

b
1

H*P(x :Y)=—a(b_a)

o—38

(11)

which is the GTPQB (divergence) measure or relative entropy of g with respect to f. when a=1,
then (11) reduces to Methai-Haubold divergence measure g from f .
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Hab(X 1Y) ﬁf )( )’:J —1}, b>1
(12) O

when b -1, (12) reduces to Kullback-Leibler relative entropy function.

Some goodness of fit test established based on entropy and divergence measures. Ebrahimi et al. [9]
studied Kullback-Leibler [14] relative information measure and its properties for order statistics

using Shannon entropy for order statistics.

Lemma 2.1: The GTPQBE between the distribution of order statistics f,,, and the original

distribution f is given by
H a’b(\Ni:n : X)= -H a’b(Yi)
where Y; is the beta distribution with parameters i and (n—i+1).

Proof: From (11), we have

H a'b(Wi;n ZY): ! T fi:n(W){ f}?\(NV\)I)J dw-1

HEO Wy )= — Tfi;n(w)(so(y))[l_""j(i_l)(l (ly))[aj(ni)dw—l

(B(i,n—i+1)) .

(B 1_7 (i- 1+1(1—2j(n—i)+1j
b at (Blin—i+1)"

= —H*P(Y))
(13)

Hence, the GTPQBE between the distribution of order statistics and the original distribution
distribution free.

is

For some specific univariate lifetime distributions, the expression (8) is evaluated as given below in

table 1.



Table 1: GTPQBE of Hz°of i"

order statistics for different lifetime Distributions

Distribution | Quantile H&P
function p(y)
Exponential | —gIn(1-y) ) B([szjo D1 (2-2 ) —1+1)-1)
am—) BGn—i+1(> %) -
Finite Range 1 B[22 )i-Drn(2- 2 ) —ivnra ] 22 %
s{l—(l—y)f} a(b—a){[r) (( J B(Enigl)[z‘;j ] ( ) 1}
Generalized | (r o B((2-2)6-1en(2-2 )it 2 R)(2r*1)
Pareto E{(l_y) (”J_l} a(bla>L[ri1Ja =) [B(i,ijiﬂ)[zi)[ 1tz j_l}
Log- 1( vy 1 ., B 272 i+§ 172 272 (n—i+1)+ > 172
Logestic ;(mj * a(bl_a){(rs)la (( J [B(i‘ 3_[”1)[22) [ D_l}
Pareto-I s(]_— y)_% (bl_ )[(Sjbl B((ng](i 1)+1,(2%)(nl)+1] 1}
alb—a)jir B(,n |+1)[ -2
Power N b, B[[2—2 2-PY-i)ra
Distribution | T(¥)°® a— a)[( ) ( )B(.n .+j1)((2 2 Ll}
Uniform r+(s—r)y

B(i,n7i+1)[27§J

1 [(s_r):1 B[(Z—g)(i—1)+1.(2—§)(n—i)+1j 1}

4. Generalized Two Parametric Quantile Based Residual Entropy (GTPQBRE):

In the context of reliability and life testing studies when the present age of a component needs to be
incorporated, then the measure (1) and (2) are not appropriate. In this situation the residual lifetime
of the system when it is still operating at time t, is (W, =W —t|w >t) which has the probability

density f(w:t)= w>t>o0. The residual entropy was considered by Ebrahimi [8], which

basically measures the expected uncertainty contained in remaining lifetime of a system and is

defined as

(14)

f()

In analogous to Ebrahimi [8] refer to Refs. [15,17], GTPQBRE of r.v. W is given by

H2PW :t)=

(15)

Obviously when t=0(14) and (15) reduces to entropy measures (1) and (2) respectively. Ref to ref.

[24]

t

T f(w
a(bl—a) J( l?((t)

J dw-11, %<a<b, b>1




(16)

= _ Brw)(i,n—i+1)

Fin(W)= i is the survival function of the i"" order statistics and
B(i,n—i+1)

1
Bw(u,v):jw“‘l(l—w)“d w, 0<w<1 is the incomplete beta function, refer to Refs. [4,5,6].

The GTPQBRE of i order statistics is defined as

l
a a 1 1)
He(y) = H** Wiy s o(y)) = 2ba) ( 'Inn I|++1) f (p(y)ady—1 (17)
y
where M is the quantile form of survival function Fi..(w). An equivalent representation of

B, (i,n—i+1)
(17) is of the form of

alb-a)Hg"(y)= L N LA (3 L
(§W (i,n—i+l))2_§ y
which is rewritten as
a(b-a)(8, (,n-i+1)f” bHvav,_'j(y)=jy[2 aj(il)(l—y)(z‘:l)(”“) ()i 2dy—(, (.n-i+1f = (18)

y

Differentiating (18) w.r.t to ‘y’, we obtain

alb- a){( (in-i+)f b(H@b(y))'_(z_gj(gy(i,n_m))lZ Y- y)™ H;;;b(y)}

n n

:(Z_EJ(EV in-i+0) syt yy -y
It can be rewritten as
v“l)[za](1—y><”-”(2-21<q<y»2-1=[z—§j<§y<i,n—i+1>)l-2yi1(1_y> ab-a)B, (in-1+0)" % (20 ()
+a(b—a)(2—9J(§y(i,n—i+1))1zy H-y)" HE (y)

a

This gives

by (Bylin- i) ey ) ) DN G D
(aly))a K 1)(2_5(1_ ey ((2 aj (b )(2 j (y)J



ab-a)E, Gn-i+DF (Mg ()
y(i—l)[ngj (l— y)(n*i)[Z*EJ

(19)
Equation (19) gives an immediate connection between the quantile density function q(y) and
vafn’(y)which show that the quantile based generalized two parametric residual entropy of i order

statistics H,;” (y) uniquely decides the underlying distribution.

Remark 3.1: when a=1,b—1, then (17) reduces to

t h B, (i,n—i+1)
ab __Eln |+l I |n |+1 I |
i ) B, (in—i+1 '[g, °9(g (i,n—i+1 ‘!‘g, og(p(y))d y +log (ln—|+1)

A quantile version of Shannon residual entropy of i order statistics obtained by Sunoj et. al, [21].

Example 3.1: Let W, be the i order statistics based on a random sample of size n from uniform

distribution on (0,1). Then
1 b B([z—gj(i—1)+1,(2_%)(n_i)+1j

a(b—a) (5= B(i,n—i+1)(2_gj

Ha o (y)= -1

Example 3.2: Let W, be the i™ order statistics based on a random sample of size n from standard
exponential distribution on (0,1). Then

1 B((Z—%j(i—1)+1,(2—%)(n—i+1)]

a(b-a) B(i,n—i+1)(2*§)

Hy 2 (y) = -1

Example 3.3: Let W, be the i order statistics based on a random sample of size n from Pareto
distribution with quantile function
1

ply)=s-y) " and p(y)=5 @-y) ()

LR}
a

and for computing HZ®(y), we have (p(y)):* = ( a-y) (1+1)J .Thus the GTPQBRE (17) of the i"

order statistics for Pareto distribution is given as

Hi2 (y) = — [( : bjl.(y)[z‘g)(i-l)(l_y)[% e ( a-yyle Jj le

alb-a) By(i,n—i+1))2_5y

is gives



hav(y) L (Sj‘;l B_y([Z—Zj(i—l)+1,(2—2)(n—i+1)+(1—zji_J 1

- _
B,(in-i+1fa

Table 2: GTPQBRE of HZ" of i order statistics for different lifetime Distributions

Distributio | Quantile H2® (y)

n function o(y)

Exponential _9—1|n(1_ y) N §y[[27§)(i—1)+1,[27§j(n—i+1)71j .
a®—a) 8,Gn—i+0(>3) N

B, G, n7|+1)(

F. t 1 b, By||l2—=|(—-D+1|2—=|(n—i+1D)+1 1_b\2
RI:r:gee S{l—(l—y)r} e a)[(] (( )( ) ( ]( J) ]( a)r,l

Pareto s r ab-a)| \r1 5, Gn i+ 0)(*2)

Generalized r'(l_ y)[r]_l} ) L[ . ],,1 5,((2-2)a- 1)+1.(2Z](ni>+[1Z][2r'f11]+1]1}

Logestic S B, (. nf.ﬂ)(

e | (2] O I 1

B, (i,n—i +1)(2*§]

Pareto-| s(l—y)% L( jg,l §y[[2—§](i—1)+1,[2—g)(n—i+l)+(1—gj%)_l

Power r(y)% {(rle [(zfgji+%—%,[2—§)(nfi)+1j 1}

Distribution a6 | (5 5 G i D"
Uniform r+(s—r)y . [m((z-2)6vra(z-B)e-pea) ]
a—a) gy(i.n7i+l)(2 %] B

5. Characterization of Generalized two parametric Quantile Based Entropy On the First
Order Statistics:

Next, we acquire the characterization result dependent on GTPQBE of the first order statistics. Let
W, and w,., be the first order statistics and last order statistic in a random sample W;,w,,..,w, }of

size n from a positive and continuous random variable W with cdf F and pdf f, then the distribution
function, the density function and the hazard rate function of first order statistics w,, are

respectively given by

and Kyn(w)= fia(W)_nfw)

putting i=11in (17), we get the GTPQBE of first order statistics, given as



Hvi‘,fn’(y)=a(bl 2 (—y J igl 2(o(y)atd y—1],

B a(bl— a) H n B }j‘(l y)(z’gJ(n—D(p(y))Eﬂd y—1

(1- y)"(2 a
(20)

The GTPQBE for sample maximum order statistics w,,., can be obtained from (17) by taking i=n,
as

(21)

A natural question emerges that whether the GTPQBE vafj (y) decides the lifetime distribution F()
uniquely. In the following example, we show this property.

Example 4.1: If W is a random variable following the Govindarajulu’s distribution with quantile
function given as

p(y)=r{(s+l)y5—sy5*1}, 0<y<Z r,s>0and p(y)=rs(s+l)y(5‘1)(l—y)

then the GTPQBRE of sample minimum for Govinarajulu’s distribution is given as

a,b _ 1 i
e )= a(ba){(B @n) n 7% {

(lo1 2 [ (( (Z nl;))b; B, {[% - j(s ~1)+1, (2 - %j(n “1)+ gj _ 1}

Example 4.2: Let W be a random variable having the exponential distribution with quantile density
function -o7*(L-y)™", @>0. For series system i =1, we obtain

M, ()= (bl— a){((nzg)lbi 1}

2—E (n-1)

by
rs (s+1)y¢Y - y))a dy-1
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On the other hand, we have = (0)2
Ha°(y) = ab_a) [z—BJ -1

a

This give Hvé\l/f:(y)— H@’b(y)_L[nlg_ J
a(b—a)(2—gj

So, in the exponential case the difference between GTPQBRE of the life time of a series system and
GTPQBRE of lifetime of each component is independent of y and depends only on parameters (a,b)

and number of components of the system.

An important quantile measure useful in reliability analysis is the hazard quantile function, which is

correspondent to the well-known hazard rate function K(w)= % :1—f|£V8\l) , which is defined as

e _flely) 1
Q(w)=K(e(y))= A-y)  a—y)p(y)

(22)

Next, we express a characterization result GTPQBRE of the first order statistics. By considering a
connection between GTPQBRE H\j‘,fn’ (y) and the hazard quantile function Q,,(x) of the first order

statistics.
Hiaw 0¥} of Exponential Distribution Him (¥} of Exponentisl Distribution
— W a=30&6=050n=5
— oo B a=29%&=055n=5
= W a=23&8=080n=5%
—_— =
£ 8 £ °
= = o -]
= . _= =
=
& =
[ [
I I I I I I I I I I
4.0 4.2 4.4 4.6 4.8 4.0 4.2 4.4 4.6 4.8
a b

Fig 1. Graph of Héf,;}:r}[‘r’j for Parameters a and b
It is clear from Fig.1 that Hvavf (y) is monotonically decreasing with respect to a but increasing with
respect to b .

Theorem 4.1: Let w,, denote the first order statistics with survival function F.,(w)and hazard
quantile function Q,, (y). Then the GTPQBRE H"(y)is given by

a(b-a)Hg"(y)= {C(thn (y))l’g —l}, % <a<b, b>1 (23)
if and only if;
a) For C= , W has exponential distribution;

=

11



1

[>-3)

Proof: Let (23) holds, then

b) For Cc< , W has Pareto distribution;

c) ForcC> , W has Finite range distribution;

W feosfe Sl i) {clan, W1 1
1-y) =y

The quantile function of exponential distribution is p(y)=-6"In(l-y) and p(y)=07"1-y)*

substituting Q. (y)= (1j1;‘((§((;/)))))n 0 yr;p(y) and simplifying, it gives

b) b b

eyl 22ty =cl- yp (2 (ol

differentiating above expression on both sides w.r.t ‘y’, we get after some simplifications

p(y) 1 {”[ZCZC 1) HJ

ply) @-vy) C[g,lj

To solve this differential equation, we integrate it on both sides w.r.t ‘y’, we get
oc-Lc —1]
a
c (1_9]

a

where C, is constant. Thus the underlying distribution is exponential if c__1 ., Pareto
b
a

ply)=Ci(-y) (

-1

2 —

distribution if - _ 1b and finite range distribution if ¢ - 1b :

2—— 2=
a a

The GTPQBE for i=1, i.e, the lifetime of the series systems, for several well-known distributions
are provided in Table 3
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Table 3: GTPQBRE of H;" of i"™ order statistics for different lifetime Distributions for a series

system.
Distribution | Quantile  function | HE"(y)
(y)
Exponential -6 In(1-y) 1 | wmer s |
a(b—a) [272)_
Finite Range 1 a-y)*
si1-(1-y)r oo " a(n,[zxj (z-2)a)els)
Generalized u {(1_y)-(ﬁj_1} N P (n(z- 2 oa)) Fa i B
Pareto ab—a)|lr+1 [nr(zfgjdfn[27§)+r(2—§j—r)(s)[k§]
Govindarajulu’ | r{(s+1)y° —sy**} . { o (o2 B((2-2) (22 (2-F)e-2)-2) J
2| (Dar o ) -1
S a-vy)
Log-Logestic E(LJ L oy 22 () e (G2)E) oy |
1-y o rorta-yr(=3)
Pareto-I 1
: (nr)( (1 Y)( —1
S(l_y) alb— a)[[nr(zj 27—j+r Zf—j J(s)( -2) J
Power 2 b _y o
Distribution ) A By[(22j+[as )'(22)("1)”}[ .
o (£)° a_ (=2 ]
Uniform Gy EET———
alb-a) n(27§)7(27§)+1

6. Characterization of Generalized two parametric Quantile Based Entropy on the n™ Order
Statistics:

In many naturalistic situations, the random variables are not necessary identified with the future
only, but they can also cite to past. Such a random variable can be called inactivity time
W =[t-w |w <t]. for fixed t >0, which gives the time elapsed from the failure of a component given

that its failure is less than or equal to t. It is also called the reversed residual lifetime. The past
lifetime r.v. ,w is connected with the reversed hazard rate function characterized by

Qo Koty o .y (24)

The reversed hazard rate function is quite practicable in the forensic science. Where exact time of
failure (eg. Death in case of human beings) of a unit is of interest. Based on this idea, Di Crescenzo
and Longobardi [7] defined uncertainty related to the r.v. W =[t-w |W <t] as

13



Hw:t)= —J'(—t)) [ ((t))jdw w>t>0,

Sunoj and Sankaran [23] have considered the quantile version of Shannon past entropy, which is
defined as

Fly)= P oly)~ gl )+ - )" [ o o)

Analogous to the GTPE, its past entropy measure is given as

2-

ﬁa'b(W:t):a(bl_a) ![L((\iv))j dw-1|, %<a<b, b>1

b
a

(25)

For more details, refer to Nanda and Paul [17]. Analogous to (25), GTPE of the i order statistics
W, is defined as

2,9
a

ﬁa'“(wi;n:t):a(bl_a) i( E.Hn((\iv))J dw-1|, t>0

t , b
J- fi:n a(W)d w
0

= =—-1
alb-a) (Be(n—i+1)*a

(26)

where Bg(,)(i,n—i+1)is the distribution function of the i™ order statistics. In terms of quantile
function (26) can be expressed as follows

Fa b (y) = A Wi s oly)) = L f(fi:n@(y))fid(p(y»—l . @)
a(b a) (BF( (y ))(I n—i+1)) to

The measure (27) may be considered as the GTPE for the i" order statistics W, of inactivity time.
Last order statistics is the significant case of order statistics. For i=n, we have
f...(w)=nF"(w)f(w), and F,,(w)=(F(w)". Thus the GTPQBE for the n™ order statistics W,,, is
defined as

H*P (Wn:n : So(y)) =

j y)( ") “D(pfy))e dy 1| (28)

14



Let W be a Power series distribution with quantile function and quantile density function are given

1 1

respectively by o(y)=rys and p(y)= ry* r,s>0.
S

Next we state a characterization result the GTPQBE of reversed residual hazard lifetime of parallel
systems. In this context, we establish that the Power series distribution can be characterized in terms

of Ha*W,., : p(y)).

Theorem 5.1: Let w,.,denote the last order statistics with survival function F,.,(w) and the reversed
hazard quantile functionQ,, (y) is expressed as

b

alo-a)FIZ® (y)= { cla, () a—l}, 2 ach, b2 (29)

if and only if W has power distribution function.

Proof: The reversed hazard quantile function for sample maxima of Power distribution is
1

2y _ fn:n (@(y)) _ nf (50()/)) -n -1 M
) Rl AT

2 279
a

Let (29) holds, then

fy)[z‘ Jo D ply)s 1y =@, ()

2,

y

E
a

substituting Q, (y)=n(yp(y))™*, gives

b

Sl e ey, )

Differentiating both sides w.r.t ‘y” and after some simplifications, this reduces to

p0)_ e ef[e o,

ply) C(b_ j y

a

To solve this differential equation, integrate on both sides w.r.t ‘y’, we get

e
=

P(Y): Cry

where C, is a constant, which characterizes the Power distribution for c {

15



Remark 5.1: If c - L , then equation (29) is a characterization of uniform distribution.
ns (2—2)—(2—2)4—1

Table 4: GTPQB past Entropy of H\j‘,'n: of i™ order statistics for different lifetime Distributions for a
Parallel systems.

Distribution | Quantile  function | H2"(y)
oly)
Exponential -07In(t-y) X {( o ee,((2- )iy, (=-2)) }
a(b—a) y (277
Generalized ooy - AU ) B\ 1)eq (1_P)(2rE1Y,
Pareto s{(l ) [”] 1} a(bl—a) () By[(z n[j)b(]( Y ;'1[1 a][ r+1j 1] 1}
y a)(r+1)°
Govindarajulu’ | r{s+1)y* -sy*" | , [zl e (oot )s(20) B
S a(b—a) yn[27%] -1
Power B RN
Distribution ") a(ba){ns(zb)(zbyjﬂl
Uniform r+(s-r)y 1 (e s ryyyt
26| n(z-2)-(2-2)e1

7. Conclusion

In this article, quantile based research of entropy measures found bigger interest among
investigators as an alternate methodology of measuring uncertainty of a random variable. A very
important non-additive generalization of Shannon entropy is that the Bilal’s and Baig’s entropy
measure, the calculation of this measure is quite easy wherever the distribution functions are not
tractable whereas the quantile functions have easier forms. we represent quantile version of this
measure of order statistics for residual and past lifetimes and take a look at their properties.
Furthermore, the uniform, exponential, generalized Pareto and finite range distributions, which are
usually employed in the reliability modeling are characterized in terms of Bilal’s and Baig’s
measure with extreme order statistics. The results obtained during this article are general in the
sense that they reduce to some of the results for quantile based Shannon entropy and Methai-
Haubold for order statistics once parameters approaches to unity.
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