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Abstract: We present a class of third-order upwind compact schemes and develop an 
implementation strategy for un-steady compressible flow applications with strong shocks 
and vortices. Two adjustable parameters are left for the user to tune the scheme for specific 
applications. A third-order upwind scheme reported by Tolstykh and termed CUD-3 (High 
accuracy non-central compact difference schemes for fluid dynamic applications, World 
Scientific) turns out to be a particular case of the presented class of schemes. The 
aforementioned adjustable parameters allow us to derive schemes that perform better than 
the CUD-3. A large number of compressible solvers in use today for applications involving 
sharp gradients in the flow field employs flux limiters. We pose our compact scheme as a 
cell-face variable interpolation scheme so that available limiters may be applied during 
construction of the cell-face fluxes. Solvers based on popular schemes such as the AUSM 
class of schemes or the CUSP will require minimal modification to incorporate the 
proposed flux reconstruction method using compact upwinding. A number of test cases in 
one dimensions are then solved to show the usefulness of the proposed scheme and its 
implementation strategy. 

1. Introduction

For fluid dynamic applications, compact schemes were suggested by Tolstykh in 1972 [1]. The
area of application was ‘the slightly rarefied hypersonic flow around blunted configurations.’ 
Compact schemes were also proposed by Kreiss. Its development and use in viscous test problems 
has been reported in [2]. The popularity of compact schemes grew with the publication of the paper 
by Lele 

[3]. In a compact scheme, derivatives of a variable in several adjacent grid cells along any 
spatial direction are related to the values of the variable in a number of cells so that the resulting 
derivative can have high-order and/or high spectral accuracy. The high formal order of accuracy is 
accompanied by a high accuracy in the wavenumber space, but it has been shown [3] that it is 
possible to derive schemes with enhanced accuracy in wavenumber space for a given order of 
accuracy high spectral accuracy. The high formal order of accuracy is accompanied by a high 
accuracy in the wavenumber space, but it has been shown [3] that it is possible to derive schemes 
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with enhanced accuracy in wavenumber space for a given order of accuracy. 
In incompressible flow applications, application of compact schemes is straightforward. One can 

either use a central scheme and add numerical diffusion from an explicit even derivative, or, can use 
an upwind compact scheme with inbuilt diffusion. The situation is differ-ent when shocks are 
present, as in high Mach number compressible flow problems. Here, across shocks one has to 
switch back to narrow-stencil dissipative formu-lae to avoid generation of wiggles. This is easier 
said than done, and has given rise to quite a few different approaches. In [1], the author indicates 
that the wiggles, in many practical cases, are ‘well localized near discon-tinuities and do not spoil 
numerical solutions.’ However, in high Mach number flows, the author mentions that the third-
order compact upwind scheme (CUD-3) failed to operate. As a solution, the author suggests the use 
of flux correction ‘introduced by Boris and Book [4] and further developed by Zalesak [5].’ 
Another possible alternative is to apply filters to damp the under-resolved high wavenumber 
components. Developments along this line can be found in [6], [7]. Application of filters has 
largely been limited to low Mach number applications. A third direction - the essentially non-
oscillatory (ENO) and weighted ENO (WENO) schemes [8] - have found widespread use in shock 
and vortex dominated flows. They employ one of a number of candidate stencils to construct high-
order fluxes at the cell-faces (ENO), or use a combination of all of the possible stencils (WENO). 
These schemes are fairly complex, and some of their variants have been found to be too dissipative 
in smooth regions [9]. A combination of ENO/WENO [10] schemes with compact schemes appears 
to be an obvious remedy of this issue, where shock capturing capacity of the former.  

The paper is organized as follows. We first derive the third-order compact upwind scheme, and 
proceed to develop the equivalent interpolation scheme. Next, we calculate two one-dimensional 
problems. Finally, concluding remarks are given. 

2. The Compact Scheme 

We restrict ourselves to a three-cell stencil and write the compact scheme for first derivative as: 
    b-1 u/ 

j-1 + b0 u/
j + b1u/

j +1 = (a-1uj-1+a0uj +a1uj+1)/dx                                      (1) 
After a Taylor series expansion, and equating coefficients of derivatives upto fourth order, we 

arrive at the following relation among the coefficients.  
a-1  =   - (2α – 4β + 3b0) / 4   

a0     =     α - 2β 
 a1     =    (-2α – 4β + 3b0) / 4 

 b-1  =     (α – β + b0) / 4  
 b1   =     (- α + β + b0) / 4 

The class of third-order compact upwind scheme, pre-sented in the above form, will be termed 
COMPUS. In the above, β is the coefficient associated with the second derivative term u2 dx/2 
collected on the right hand side of Eq. 1. We recommend α in the range of 0 < α < 1:0, though 
higher values are possible and may be explored if needed. We set b0 = 1 in our applications. 

3. Wave Propagation in one-dimension 

The class of third-order accurate compact schemes derived in this paper has been analyzed in the 
previous section in the wavenumber space. We have particularly noted that greater the value of, the 
higher is the numerical dissipation, together with lower phase error. Since reduced phase error and 
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reduced dissipation do not happen together, we have to carefully select the parameters and b0 for 
any particular application. In the following two wave propagation problems, we show that if the 
wavenumber of the wave packet being propagated falls within the zone where phase error is very 
low, we should choose the scheme with as low dissipation as pos-sible for its time integration. We 
first solve the problem of Trefethen. Here we integrate the 1D wave equation for a very short time 
interval, and show that lower dissipation still has a significant impact on the correct amplitude of 
the travelling wave. The next problem is a long time integration problem taken from Bose et al.. In 
all these problems, time stepping is performed by a third-order accurate four-stage Runge-Kutta 
scheme. 

 
Figure 1 Wave propagation problem of Trefethen COMPUS with α= 0:01 and exact solution at t = 1. 

3.1. The Problem of Trefethen 

We solve the one-dimensional wave equation: 
  du/dt  + c du/dx = 0                                                             (2) 

We take c = 1. The domain is 0<x<3. The wave packet at t = 0 is centred at x = 0.5 and is given 
by 

  u(x; t = 0) = e -16(x-0.5)2 sin k0x                                             (3) 
There are 480 cells in the domain, so that dx = 1/160. k0 is chosen as k0 dx = 2π/8, with 8 grid cells 

per wavelength, suggested in [11]. A CFL of 0.1 is used for time step calculation. Fig. 1 shows the 
position of the exact solution and the numerical result of COMPUS with α= 0:01; b0 = 1 at t = 1. 
We note that they are almost indistinguishable. Fig. 2 displays the results at the same time instant 
for (1) α = 1:0; b0 = 1; (2) α= 0:1; b0 = 1 (top row) and (3) α= 1:0; b0 = 8/12 ; (4) third-order 
explicit MUSCL scheme (bottom row). The value of k0dx is within the zone where the real part of 
the modified wave number is close to 1 for all the schemes. For MUSCL, it is actually at the edge of 
its resolving capacity. The amplitude of the wave packet is thus more for the scheme with less 
numerical dissipation. This figure provides evidence of how important the numerical dissipation 
properties of the scheme could be - a resolved wave could be almost reduced to non-existence in a 
short time interval if care is not exercised in scheme selection. 
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Figure 2: Wave propagation problem of Trefethen at t = 1. Top row: COMPUS with α= 1 (left 

frame), 0.1(right frame); b0 = 1 for both. Bottom row: CUD-3 (left frame) and third order explicit 
MUSCL. 

3.2. A Long Time Integration Problem 

Having seen the effects of numerical dissipation in damping wave packets in a short time interval, 
we now observe the performance of a low-dissipation version of COMPUS in solving the same 
wave propagation equation over a relatively longer time interval. For this purpose we take the initial 
condition from Bose et al.: 

u(x; t = 0) = e -20x2 cos k0x (4) 

 
Figure 3 Long time integration of the wave equation. Computed with α = 0:01; b0 = 1. 

The computational domain extends from x = 10 to x = 200. 21000 cells have been taken in this 
interval to maintain x = 0:01. The authors compare the performance of several schemes for this 
problem, including the 4P3Om1 and 7P7Om2 schemes, the OUCS3 and the ADB scheme 
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developed by the authors. Out of these, the first is a third-order spectrally optimized scheme 
involving four cells. In Fig. 3, we show the performance of the COMPUS with α= 0:01; b0 = 1 for 
this problem at t = 40; 100. We have computed with the same CFL of 0.1. This corresponds to 
figure 10 and 11 of Bose et al. We note that the low-dissipation version of the COMPUS does much 
better compared to the 4P3Om1 scheme, and its performance is very close to that of the OUCS3, 
another optimized scheme with a larger stencil. We also notice that the 7 point optimized seventh-
order scheme is unstable and produces much higher amplitude than the initial wave packet. At t = 
40 the 4P3Om1 shows small ripples in the place of the actual wave packet. At t = 100, the waves 
are almost non-existent under this scheme. The performance of the low-dissipation COMPUS, on 
the other hand, is quite satisfactory. 

4. Conclusion 

A class of third-order compact upwind scheme has been implemented for application of unsteady 
compressible flow problem with shocks and vortices. Number of one-dimensional problems has 
been solved using this scheme. Results are matches well with the exact result. Future scope lies in 
the application of these scheme to two-dimensional compressible problem. 
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