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Abstract: In the hyperspectral images (HSI) acquired by the new-generation
hyperspectral sensors the signal dependent noise is an important limitation to the
detection. Therefore, noise reduction is an important preprocessing step to analyze
the information in the hyperspectral image. A signal dependent noise cannot be
reduced by conventional linear filtering. Therefore, a new method based on Parallel
factor analysis (PARAFAC) decomposition is proposed to estimate the noise of
hyperspectral remote sensing image. Then, the estimated noise is used for whitening
the colored structural noise. By using this transformation, the data noise from
new-generation hyperspectral sensors is diminished, thereby allowing a minimization
of negative impacts on hyperspectral detection applications.

1. Introduction

Hyperspectral sensors collect data in hundreds of narrow contiguous spectral bands, providing powerful means
to discriminate different materials by their spectral features. Actually, denoising is of great interest for target
detection [1] with the underlying principle of targets being distinguishable. As HSIs are normally produced by
a series of sensors, the noise mainly comes from two aspects: signal-independent circuity noise (SI) and signal-
dependent photon noise (SD) [2]. The noise level of HSI may vary dramatically from band to band. The noise
variance in each band of HSI is not constant, in particular, there exist some bands at which the atmosphere
absorbs so much light that the signal received from the surface is unreliable. Although the SD noise has become
as dominant as the SI noise in HSI data collected by new-generation hyperspectral sensors due to the improved
sensitivity in the electronic components [2, 3, 4, 5, 6, 7]. For this the denoising methods for those two types
of noise are not the same. The SI noise term is generally modelled as additive and spatially stationary in each
band, but the variance of the noise varies from band to band. That is to say, the level of the noise is dependent
on the average amplitude of each band, but spatially stationary in each band. Based on HSI with high spatial
resolution often contain a large number of small homogeneous areas, in [9] an automatic algorithm by dividing
an image into several small blocks and calculating local means and local standard deviations of these blocks is
developed, then estimating the noise by using a histogram statistical algorithm. To approximate better the noise
variance of small blocks, [10] utilized data-masking technology by assuming that image textures are generally
smoother than noise. However, the aforementioned methods treat separately each band in HSI data and fail
to take spectral information into account. To utilize better the information from high spectral resolution of
HSIs, a spectral and spatial decorrelation algorithm [11] based on the multiple linear regression (MLR) model
was proposed to estimate noise. The residuals of the MLR model are considered to be noise, while the signal
of a pixel at a particular band can be described as a linear combination of the neighboring pixels in the same
band and the same spatial pixels in immediately adjacent bands. Based on the mixed noise assumption, the
splitting of noise and the original signal from a HSI is usually the first step in these algorithms. Then, maximum
likelihood estimation (MLE) is used for the estimation of the SD and SI noise parameters in the second step
[12], this method is referred to as the hyperspectral noise parameter estimator (HYNPE) method. In [2], the SD
and SI noise were estimated from a single scanning window. Because of the high computational complexity, the
algorithm is not widely applied. In summary, MLE-based algorithms suffer from two disadvantages: sensitivity
in initial value selection and high computational complexity for the optimal solution. Recently, in [13] denoising
algorithm employing a spectral-spatial adaptive total variation model (SSATV), in which the spectral noise
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differences and spatial information differences are both considered in the process of noise reduction is proposed.
In this paper, we propose a novel algorithm that can estimate noise from HSIs with different noise types.

According to the different statistical properties of SI and SD noise, in this paper, we propose a new method
based on PARAFAC decomposition [14, 15] to remove these two types of noise respectively. Our proposed
method is applied to the simulated HSIs in order to evaluate their performances in a controlled environment. Re-
sults obtained on the real-world HYperspectral Digital Imagery Collection Experiment (HYDICE) and airborne
visible/infrared imaging spectrometer (AVIRIS) Indian Pines HSIs are also presented and discussed. To com-
pare the denoising performance of PARAFAC to other methods, multiway Wiener filter (MWF), prewhitening-
multiway Wiener filter (PMWF) method proposed to reduce colored SI noise [16], HYNPE method, SSATV
method and two well-known 2D denoising methods, minimum noise fraction (MNF) and noise-adjusted principal
components analysis (PCA) [17], are used in the experiment section. The experimental results show that the
proposed method have potential prospective in the reduction of both SI and SD noise in HSIs.

The remainder of the paper is organized as follows : Section 2 reviews some multilinear algebra tools. Section
3 gives the data model of HSI distorted by both SD and SI noise. Section 4 presents the detailed description
of our proposed based on multilinear algebra decomposition for enhancement of SNR. Some denoising and
comparative results are contained in Section 5. Finally, section 6 concludes the paper.
Within the scope of this paper, scalar is denoted by x, vector by x, matrix by X and tensor by §.

2. Multilinear algebra tools and signal model

In this paper, the order of a tensor is defined as the number of dimensions or modes. Let I1, I2, I3 ∈ N denote
index upper bound the tensor. A tensor X ∈ RI1×I2×I3 is a real 3-dimensional array, whose element is noted as
xi1,i2,i3 , where i1 = 1, · · · , I1, i2 = 1, · · · , I2 and i3 = 1, · · · , I3. In the following, some basic multilinear algebra
tools used in tensor decompositions are introduced.

2.1. Rank-one Tensor

An N -mode tensor X ∈ RI1×I2×I3 being rank 1 means that it can be written as the outer product [18] of 3

vectors, that is: X = a(1) ◦ a(2) ◦ a(3). So, each element of X is xi1,i2,i3 = a
(1)
i1
a
(2)
i2
a
(3)
i3

for all 1 ≤ in ≤ In with

n = 1, 2, 3, where a
(1)
i1
, a

(2)
i2

and a
(3)
i3

are the i1th, i2th and i3th element of a(1),a(2) and a(3), respectively.

2.2. n-mode Unfolding

The n-mode vectors are the In-dimensional vectors obtained from a tensor by varying index in while keeping
the other indices fixed. The so-called n-mode flattened matrix Xn ∈ RIn×Mn (n = 1, 2, 3) denotes the n-mode
unfolding matrix of a tensor X ∈ RI1×I2×I3 , with size In×Mn where Mn = Ip×Iq with p 6= q 6= n (p, q = 1, 2, 3).
The columns of Xn are the In-dimensional vectors obtained from X by varying index in while keeping the other
indices fixed.
2.3. n-mode Product

The n-mode product ” ×n ” is defined as the product between a data tensor X ∈ RI1×...×IN and a matrix
B ∈ RJ×In in mode n. It leads to the tensor U=X ×n B of size I1 × · · · × In−1 × J × In+1 × · · · × IN ,

whose entries are given by ui1,··· ,in−1,j,in+1,··· ,iN =
∑In

in=1 xi1,i2,···iN bj,in where bj,in denotes the (j, in) element
of matrix B and j = 1, · · · J .
2.4. PARAFAC Decomposition Model

PARAFAC model factorizes a tensor into a sum of rank-1 tensors [18]. For instance, tensor Y ∈ RI1×I2×I3 can
be expressed as

Y ≈ Ŷ =

Ks∑
k=1

Yk =

Ks∑
k=1

λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k (1)

where Ks is the rank, Ŷ is the rank-Ks PARAFAC approximation of Y; Yk ∈ RI1×I2×I3 is rank-1 tensor;

a
(1)
k ,a

(2)
k ,a

(3)
k ∈ RIn are normalized vectors of the n-mode space of Y normalized by a

(n)
k = a

(n)
k /‖ a

(n)
k ‖,

n = 1, 2, 3; and λk = ‖a(1)k ‖‖a
(2)
k ‖‖a

(3)
k ‖, with k = 1, 2, · · · ,Ks. From Eq. (1) the (i1, i2, i3)th entry of the

tensor Ŷ can be expressed as

ŷi1,i2,i3 =

Ks∑
k=1

λka
(1)
i1,k

a
(2)
i2,k

a
(3)
i3,k

(2)

with i1 = 1, . . . , I1, i2 = 1, . . . , I2, i3 = 1, . . . , I3.
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3. Data model

A noisy HSI can be expressed as a third order tensor R ∈ RI1×I2×I3 composed of a multidimensional signal
X ∈ RI1×I2×I3 impaired by an additive random noise N ∈ RI1×I2×I3 . The tensor R can be expressed as [19]:

R = X +N (3)

where N accounts for both SI and SD noise [20] and its variance depends on the pixel xi1,i2,i3 in the useful
signal X. Element-wise, the data model is:

ri1,i2,i3 = xi1,i2,i3 + (xi1,i2,i3)1/2 · ui1,i2,i3 + wi1,i2,i3 (4)

where ui1,i2,i3 is a stationary, zero-mean uncorrelated random process independent of xi1,i2,i3 with variance σ2
u,i3

and wi1,i2,i3 is electronics noise which is zero-mean white Gaussian noise in each band with variance σ2
w,i3

. The

additive term x1/2u is the generalized SD noise and denoted as photon noise, w is the SI noise component and
is generally assumed to be Gaussian distribution in each band. Then, we can define:

N = NSD +NSI = NSD +W, (5)

and Equation (3) can be correspondingly rewritten as

R = X +NSD +W. (6)

With the assumption that x, u and w are independent and both u and w are zero mean and are stationary,
the variance of noise N in band i3 of the HSI could be written as [2, 12]

σ2
N ,i3 = σ2

u,i3 · µi3 + σ2
w,i3 (7)

where µi3 , E[X] = 1/(I1I2)
∑I1

i1=1

∑I2
i2=1 xi1,i2,i3 is the mean of all xi1,i2,i3 in the i3th band of X with

i3 = 1, · · · , I3. The unfolding matrix R3 ∈ RI3×M3 of the HSI data tensor R ∈ RI1×I2×I3 (with M3 = I1I2 )
can be expressed as :

R3 = X3 + N3 (8)

where X3 is the 3-mode unfolding matrix of the multidimensional signal tensor X and

N3 = NSD,3 + W3 (9)

with NSD,3 and W3 being the 3-mode unfolding matrices of NSD and W respectively. Using the mean noise

variance of the i3th spectral band defined as 1/(I1I2)
∑I1

i1=1

∑I2
i2=1 σ

2
N ,i1,i2,i3

= µi3σ
2
u,i3

+ σ2
w,i3

where

µi3 = 1/(I1I2)
∑I1

i1=1

∑I2
i2=1 xi1,i2,i3 is the mean of all xi1,i2,i3 in the i3th band of X with i3 = 1, · · · , I3, and

the assumption of the independence of x and u, where u is zero-mean and independent between spectral bands,
the covariance matrix of the 3-mode unfolding matrix NSD,3 can be expressed as:

C
(3)
NSD

= diag(µ1σ
2
u,1, µ2σ

2
u,2, · · · , µI3σ

2
u,I3) (10)

4. Proposed denoising method based on PARAFAC decomposition model

Our aim is to estimate the signal tensor X from tensor R̂, in the sense of minimum mean square error. From
Equation (1) the rank-Ks PARAFAC approximation of noisy R̂ is:

Ra =

Ks∑
k=1

λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k (11)

With the assumption that the noisy tensor R̂ can be exactly expressed by sum of K (K > Ks) rank-1 tensors,
then:

R̂ =

Ks∑
k=1

λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k +

K∑
k=Ks+1

λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k = Ra +M (12)
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where M =
∑K

k=Ks+1 λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k is a residual tensor.

Since the rank-1 tensors are orthogonal, then the square error of PARAFAC decomposition

‖R̂ −Ra‖2 =
∑K

k=Ks+1 λ
2
k‖a

(1)
k ◦ a

(2)
k ◦ a

(3)
k ‖2. According to the definition in Equation (2), a

(n)
k = a

(n)
k /‖a(n)k ‖,

n = 1, 2, 3, element-wise, a
(n)
i,k = a

(n)
i,k /

(∑In
i=1 |a

(n)
i,k |2

)1/2

, then

a
(1)
k ◦ a

(2)
k ◦ a

(3)
k =

a
(1)
i,ka

(2)
j,ka

(3)
p,k(∑I1

i=1 |a
(1)
i,k |2

)1/2(∑I2
j=1 |a

(2)
j,k|2

)1/2(∑I3
p=1 |a

(3)
p,k|2

)1/2

=
a
(1)
i,ka

(2)
j,ka

(3)
p,k(∑I1

i=1

∑I2
j=1

∑I3
p=1 |a

(1)
i,ka

(2)
j,ka

(3)
p,k|2

)1/2

(13)

so, ‖a(1)k ◦ a
(2)
k ◦ a

(3)
k ‖2 = 1 and ‖R̂ − Ra‖2 =

∑K
k=Ks+1 λ

2
k.

Therefore, min ‖R̂−Ra‖2 = min
∑K

k=Ks+1 λ
2
k =⇒ {λk | k = Ks+1, · · · ,K} are (K−Ks) smallest terms among {λk | k =

1, · · · ,K}. Therefore, the minimum of the square error ‖R̂ − Ra‖2 corresponds to throw away other smaller
terms from Ks + 1 to K of PARAFAC decomposition. The signal components in the smallest terms from
Ks + 1 to K are the smallest ones among all the signal components from 1 to K of PARAFAC decomposition.
Therefore, for fixed Ks, PARAFAC decomposition can reduce the noise, that is to say: the rank-Ks PARAFAC
approximation of a noisy tensor results in an estimation of the signal,i.e.,

Ra =

Ks∑
k=1

λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k ≈ X̂ . (14)

Since the denoising by PARAFAC decomposition is based on skipping smaller terms from Ks + 1 to K where
noise components exist, so PARAFAC decomposition has the effect of the reduction of noise, that is to say the
residual parts of PARAFAC decomposition, i.e.,

R̂ − Ra = R̂ − X̂ = N̂ (15)

is an estimate of the noise N .
4.1. Estimation of the Optimal Rank Ks of PARAFAC Decomposition

In this paper, we assume that the statistical properties of both the signal and the noises are relatively constant
in the tensor R and the variance of the SD noise in Equation (7) can still be expressed by σ̂2

u,i3
· µ̂i3 , where

σ̂2
u,i3

and µ̂i3 are the variance of random process ui1,i2,i3 and the mean of all pixels in the i3th band of R,

respectively. Therefore, the covariance matrix C
(3)
N of noise is a diagonal matrix. If the squared norm of the

covariance ‖C(3)
N ‖2 is quite close to the sum of the squared diagonal elements

∑I3
i3=1 c

2
i3,i3

, then this C
(3)
N can be

considered approaching a diagonal matrix. This criterion is used to estimate the optimal rank Ks of PARAFAC
decomposition for the reduction of noise.
4.2. Summary of the Proposed Method for Signal-to-Noise Enhancement

The complete proposed method to reduce both SD and SI noise noise in HSIs can be summarized as follows:
1. Estimate the noise N from R using PARAFAC:

(a) Unfold the estimated noise tensor N to n-mode unfolding matrix with n = 1, 2, 3,
(b) Calculate the covariance matrix of the n-mode unfolding matrix of the estimated noise tensor,
(c) Use the criterion above to assess the result matrix obtained from step b) diagonal matrix. Then, the rank Ks

of PARAFAC decomposition for the reduction of noise could be obtained from these three steps.

2. Estimate the signal tensor X̂ = R− N̂
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5. Experimental results

To demonstrate the efficacy of different methods for noise reduction, the peak signal to noise ratio (PSNR) of
the denoised HSI will be compared. The PSNR can be calculated by

PSNR = 10 log10

(max{X})2

MSE
(dB) (16)

where

MSE = 1/(I1I2I3)

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

(xi1i2i3 − x̂i1i2i3)2 (17)

In addition, the variance of the residual noise, X̂ −X , in the simulated HSI and the variance of the removed noise,
R−X̂ , in the real data are compared in this paper after denoising by different considered methods: PARAFAC,
PMWF, HYNPE, MWF, SSATV, and two well-known 2D denoising methods, MNF and noise-adjusted PCA.
5.1. Simulated Data Experiments

To verify the performance of the proposed method a synthetic HSI is generated according to the data model in
Equation (3), with the spectral signatures presented in Fig. 1 (a), having size 150× 150× 148 . There are six
target types and three different spatial sizes 7 × 7 pixels, 2 × 2 pixels and 1 × 1 pixel of each type, which are
shown in Fig. 1(b). These targets are mixed to the background by using the linear mixing model with target
abundance being 85% (mixing ratio). The random noise is generated with a variance depending on the value
of the useful signal according to Equation (7) and added into the signal X as Eq. (4) to create the simulated
HSI data R. In the following sections, the variance of the residual noise in the simulated HSIs after denoising,
the peak signal to noise ratio (PSNR) and the ACE target detection results of simulated HSI denoised by the
considered methods will be illustrated and discussed.

Figure 1: (a) Spectral signatures of the simulated targets and background, (b) Simulated HSI without noise,
from top to bottom the index of targets is 1 to 6 respectively

5.2. Variance of Residual Noise

Fig. 2(a) shows the noisy simulated image with SNR= 30dB, from which one can see that the small targets
are almost disappeared in the noise. The variances of SD and SI noise are chosen equal (σ2

NSD
= σ2

w), thus the

noise variance of N in this case varies strongly from band to band. The variance of the residual noise, X̂ -X , in
the denoised HSI is evaluated at each band and some results are shown in Fig. 2 (b) where the noise variance
of N in the raw simulated HSI is also illustrated as a comparison. From Fig. 2 (b) it can be seen that all the
considered methods can effectively remove the noise in the simulated HSI since the residual noise variance are
much lower than that in raw HSI. But, Fig. 2 (b) demonstrates that the denoised HSI by PARAFAC method
contains the least noise when compared against other considered methods.
5.3. Target Detection Performance: Probability of Detection

The main purpose of HSI denoising is to improve the results of detection, classification, etc. In this section, we
focus on the improvement of target detection using the adaptive coherence/cosine estimator (ACE) [22] which
is largely applied to HSI data. The results of ACE target detection of both simulated and real data denoised by
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Figure 2: (a) Noisy image with SNR =30 dB, (b) Noise variance of raw simulated HSI and residual noise
variances of denoised HSI

our proposed PARAFAC method and other considered methods are shown and discussed. For the HSI described
in Equation (3), the ACE detector can be expressed as:

ACE =
(sTΓ−1rj)

2

(sTΓ−1s)(rTj Γ−1rj)
(18)

where rj is the vector in the unfolding matrix R3 of tensor R with j = 1, · · · , I1I2, s is the target spectrum
template Γ is the covariance matrix of R3. To assess the performance of detection, the probability of detection
(PD) is defined as:

PD =

∑ns

i N rd
i∑ns

i Ni
, (19)

and the probability of false alarm (PFA) is defined as: PFA =
∑ns

i N fd
i∑ns

i (I1×I2−Ni)
, where ns is the number of spectral

signatures, Ni the number of pixels with spectral signature i, N rd
i the number of rightly detected pixels, and N fd

i

the number of falsely detected pixels. To set the values of the two noise variances σ2
NSD

= 1/I3
∑I3

i3=1 σ
2
u,i3
·µi3

and σ2
w,i3

, we define some quantities: The signal to noise ratio (SNR) of the synthetic noisy HSI

SNR = 10 log10

‖X‖2

‖N‖2
(dB) (20)

then the noise variance of N is σ2
N = P · 10−

SNR
10 with

P = 1/(I1I2I3)

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

x2i1,i2,i3 . (21)

Assuming
δ = σ2

N /σ
2
w, (22)

for the given values of SNR the values of the noise model parameters can be obtained:

σ2
NSD

=
δ · σ2

N
1 + δ

σ2
w =

σ2
N

1 + δ

(23)

With the definitions above, it is clear that for δ = 1, σ2
NSD

= σ2
w, i.e., SD noise source contributes similarly

as white SI noise source to the simulated HSI, and there is not a dominant noise source in the simulated HSI,
for δ < 1, σ2

w is higher than σ2
NSD

and the simulated HSI is distorted mainly by white SI noise, otherwise for
δ > 1 the SD noise source is dominant. So, in this paper, we consider the cases of δ = [0.1, 0.3, 0.5, 1.0, 1.5,
2.0, 2.5] with constant SNR = 30dB which can help to evaluate the influence of SD and SI noise variance on
the denoising performance of different methods. Fig. 3 shows the PD of ACE target detection results under
the condition PFA=10−4 for simulated HSI (Fig. 2 (a)) denoised by the considered methods in this paper. In
Fig. 3 it is clear that the probability of detection of denoised HSI by PARAFAC method for different values of
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Figure 3: Probability of detection of simulated HSI denoised by different methods with SNR= 30dB and for
PFA= 10−4

δ outperforms other methods. The SD and SI noise are removed by throwing away other smallest terms from
Ks + 1 to K, thus the quality of the denoised HSI by PARAFAC is ameliorated so much that the ACE target
detection of the denoised HSI is improved greatly.

For the real-world HSIs, the denosing performance of the proposed method is also verified and discussed in
the next section.
5.4. Results on Real-World Data

As the previous test is not realistic in the sense that true HSI is simulated according to the data model in
Equation (3)-(7), a real-world image is considered in this section. Referred to as HYDICE HSI, was acquired
by HYperspectral Digital Imagery Collection Experiment (HYDICE).
5.5. Removed Noise Variance and Detection Results

The real-world HYDICE HSI shown in Fig. 4(a) has 150 rows and 140 columns and 148 spectral channels out
of 210 with 0.75 m spatial and 10 nm spectral resolution. It can be represented as a 3D data cube, denoted
by R ∈ R150×140×148. Six targets are added into the HSI and each row of targets in Fig. 4(a) has the same
target spectral signature (spectral reflectance) illustrated in Fig. 4(b), which is taken from the image itself.
The target size is 5× 5 pixels along the first column, 3× 3 pixels along the second one and 1× 1 pixel along the
last one. To assess the denoising results obtained by the proposed method, the removed noise (R−X̂ ) variance
is calculated at each band and plotted in Fig. 5 and the receiver operating characteristic (ROC) curves of ACE
target detection is presented in Fig. 6.

Figure 4: (a) HYDICE HSI used to compare different denoising methods, from top to bottom the index of
targets is 1 to 6 respectively. (b) Spectral signatures (spectral reflectances) of the simulated targets. (c) Noise
variance of raw HYDICE HSI
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Figure 5: Variance of removed noise from HYDICE HSI with different methods

Fig. 5 further demonstrates the effectiveness of noise reduction of the image by the proposed method, which
indicates that SD noise really exists in this HYDICE HSI image.
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Figure 6: ROC curves of the denoised HYDICE HSIs obtained by ACE detector

Fig. 6 shows the comparison of ROC curves obtained by ACE detector from different methods. It is obvious
that the PD values of ACE target detection of denoised HYDICE HSI by PARAFAC method are improved
significantly when compared against raw HYDICE HSI counterpart and it is indicated that they are superior to
the other considered methods in the reduction of both SD and SI noise. The improvement of target detection of
the HYDICE HSI denoised by PARAFAC method is superior to that by SSATV. Since the PARAFAC method
has not limitation in denoising colored noise, it can be concluded that the SD noise is at least as dominant as
the SI noise in this HSI. The PMWF, MWF, noise-adjusted PCA and MNF methods are not designed for SD
noise reduction, so their denoising performance are not ideal, which is reflected indirectly by the target detection
results in these ROC curves in Fig. 6. HYNPE method has limitation in removing all SD noise components
as shown in Fig. 5, the removed noise by this method is least and correspondingly its denoising performance
confines its contribution in the improvement of target detection of this HYDICE HSI.

6. Conclusion

In this paper, we developed a new multidimensional denoising method based on multiple linear regression
and multilinear algebra tools to enhance SNR of HSI data collected by new-generation hyperspectral sensors,
distorted by both SI colored and SD noise. To reduce both SD and SI noise, we propose a tensor-based method.
PARAFAC decomposition is applied to the noisy HSI to estimate the signal tensor. PARAFAC decomposition
must be conducted at the appropriate rank which can be estimated according to the statistical properties of
noise. The performance of the proposed PARAFAC method are validated on the simulated HSIs distorted by
both SD and SI noise and on the real-world HYDICE. The HYDICE dataset is used to evaluate the denoising
and detection results. The experimental results show the efficiency of the proposed denoising algorithm to
improve the SNR in hyperspectral images and the target detection.

From the analysis and the comparative study against other similar methods in the experiments, it can be
concluded that PARAFAC method can effectively reduce both SD and white or colored SI noise from HSIs. It
is also necessary to take into account the noise signal-dependency hypothesis when dealing with HYDICE HSI
data.
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