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Abstract: This basic concepts and principles of the I2C communication protocol were 
introduced in this paper. Based on the I2C communication protocol, the eUIDE software 
platform and the ELAN EM78P259N single-chip microcomputer was used to realize the 
data transmission and reception between EM78P259N and AT24C02 in assembly language, 
and the timing relationship diagram of data transmission verification and data transmission 
SDA and SCL was  given. The defects of the existing I2C communication protocol were 
analyzed, and the improvement schemes were given from the physical layer and the 
protocol layer, and the advantages and disadvantages between the schemes were evaluated. 

1. Introduction  

Data communication protocol, also known as data communication control protocol, aims to 
ensure the efficiency and reliability of communication between two parties in a data communication 
network. 

The data communication protocol makes a series of conventions for data format, data 
transmission order and rate, confirmation or rejection, error detection, retransmission control and 
interrogation. This paper mainly introduces the Inter-Integrated Circuit (hereinafter referred to as 
I2C) bus communication protocol, and gives the timing diagram and protocol improvement of data 
transmission verification, data transmission serial SDA (hereinafter referred to as SDA) and serial 
SCL (hereinafter referred to as SCL). 

The definition, basic concept and working principle of I2C bus communication protocol are 
introduced in this paper. eUIDE software platform and ELAN EM78P259N single-chip 
microcomputer are used to realize data transmission and reception between EM78P259N and 
AT24C02 chips in assembly language, and the corresponding verification results are given. 

Although the I2C bus communication protocol saves the pins of the microcontroller and the 
additional logic chips, the printed circuit board is simpler and costs less. However, when one device 
occupies the SCL as the host during communication, the other I2C devices can only act as slaves, 
which passively respond to the commands of  host but do not have the initiative to send and receive 
data. In response to this major flaw, this paper will present improvements and compare the 
advantages and disadvantages of several scenarios. 
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2. I2C bus communication protocol 

The I2C bus is a simple two-wire synchronous serial bus developed by Philips. I2C is both a bus 
and a communication protocol. 

In embedded development, communication protocols can be divided into physical layer and 
protocol layer. The physical layer guarantees the transmission of data on the physical medium; the 
protocol layer mainly stipulates the communication logic, and uniform standards for packing and 
unpacking the data transmitted by both parties. 

2.1. Physical layer 

The wiring diagram of the I2C communication system is shown in Figure 1. 

 
Figure 1 I2C system wiring diagram (two-wire system) 

 
I2C communication requires only two bidirectional buses, SDA and SCL. SDA is used to 

transmit data, and SCL is used to synchronize data transmission and reception. 
Multiple I2C communication devices can be connected to the bus. Each device has an 

independent 7-bit address code. The upper 4 bits are fixed. The device type is specified by the 
manufacturer. The lower 3 bits are the device pin custom address. The host is a logic module with a 
central processing unit CPU that initializes the data transfer of the bus and generates a clock signal 
that allows transmission. The host uses each device's independent address to access other devices, 
and any addressed device is called a slave. The I2C communication bus supports data transfer 
between one host and multiple slaves, i.e. ‘one-to-many’. 

Both SDA and SCL require a pull-up resistor. When the bus is idle, both lines are high level. 
Any device connected to the bus outputs low level will pull the bus signal low.  

2.2. Protocol layer [1] 

The protocol layer specifies the data validity of the communication, start and stop signals, 
responses, data read and write sequences, address broadcasts, and so on. 

2.2.1. Data validity 

When the bus performs data transmission, each bit of data has a corresponding clock pulse  (or 
synchronous control), that is, each bit of data is serially transmitted bit by bit on the SDA in 

2



 

cooperation with SCL. While SCL is high, the data on SDA must remain stable, i.e. there must be 
no level changes. The high and low states on SDA are allowed to change only while SCL is low. 

As shown in Figure 2 below, to transmit the first bit of data, the SDA level must be changed 
while SCL is still low.Then SCL is high, the slave receives the first bit of data. SDA can change 
according to the transmission data value when SCL goes low. when SCL is high again, SDA can't 
change level, slave receives second bit data, and so on, until reaches stop signal. 

 
Figure 2 Data validity diagram 

2.2.2.  Start and stop signals 

The start and stop signals mark the start and end of data transmission, which is different from the 
normal transmission data. 

It is the start signal when SDA changes from high to low level during the high level of SCL. The 
stop signal is that SDA changes from low to high level when SCL is high level. There is 
contradiction to: SDA level must be fixed when SCL is high. i.e. ‘violation.’ It is this special 
change that distinguishes the start and stop signals from normal data transmission. 

Both the start and stop signals are sent by the master.The bus is occupied after the start signal is 
generated, . After the stop signal is generated, the bus is in an idle state, and both SDA and SCL are 
at a high level. 

 
Figure 3 Start and stop signal timing diagram 

2.2.3.  Valid response and non-response 

All data on the I2C bus is transmitted in 8-bit bytes. The SCL level changes once and the SDA 
transmits 1-bit data as described in 2.2.1. Each time the host transmits one byte (8 bits), it releases 
the SDA during the ninth clock pulse and waits for the slave to feed back the acknowledge signal 
(high/low level of one pulse width). 

When the response signal is a low pulse, it is specified as a valid response (hereinafter referred to 
as ACK), indicating that the slave has successfully received the byte; when the response signal is a 
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high pulse, it is specified as a non-acknowledgement (hereinafter referred to as NACK), indicating 
The machine failed to receive the byte. 

If the slave pulls SDA low during the low period before the ninth clock pulse and ensures that 
SDA is stable low during SCL high level, then ACK is considered to be fed back. 

If the host requests data from the slave and receives it, the host is the requesting party, and it can 
know whether having received or not at the receiving end, and does not need to feed back to the 
slave. However, after the host receiving the last byte, a NACK signal is sent to keep synchronized 
with SCL, the slave is notified to end the data transmission, and the SDA is released, so that the 
host sends a stop signal. 

If the master pulls SDA high during the low period before the ninth clock pulse, and ensures that 
SDA is stable high during high level of SCL, it is considered to be NACK. 

 

Figure 4 Response signal 

2.2.4.  I2C read and write process 

1 Write data flow 
The standard process for writing data is: 
(1) The host first initiates the START signal; then sends the I2C address code (7bit, see 2.1) and 

write operation 0 (1bit), waiting for the slave to respond to the ACK. This process is called address 
broadcast. 

(2) The slave sends an ACK; 
(3) The host sends the register address (8bit), that is, the data is written to the slave, waiting for 

the slave to respond to the ACK; 
(4) The slave sends an ACK; 
(5) The host sends data (8 bits), that is, the data to be written into the register, waiting for the 

slave to respond to the ACK; 
(6) The slave sends an ACK; 
(7) Steps 5 and 6 can be repeated multiple times, that is, sequentially writing a plurality of 

registers starting from the register address indicated in step 3, as shown in FIGURE6  
(8) The host sends a stop signal. 

2 Read the data flow 
Use a read-write composite format. During the transmission, the host sends 2 start signals: the 

first time the master finds the slave through the slave address, sends the slave internal register or 
memory address; and reads the contents of the address the second time . When the host wants to 
read the slave data, it will release the control of the SDA. The slave controls the SDA, and the host 
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is responsible for receiving. When the host wants to write data to the slave, the SDA is controlled 
by the master, and the slave is responsible for receiving. 

 
Figure 5 Write the 1byte data flow 

 
Figure 6 Write the nbyte data flow 

 

 Figure 7 Read the 1byte data flow 

 
Figure 8 Read the nbyte data flow 

 
The standard process for reading the data is : 
(1) The host first initiates a START signal; then sends an I2C address code (7bit) and a write 

operation 0 (1bit), waiting for the slave to respond to the ACK; 
(2) The slave sends an ACK; 
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(3) The host sends the register address (8bit), that is, the data to be read is stored in the slave 
position, waiting for the slave to respond to the ACK; 

(4) The slave sends an ACK; 
(5) The host initiates the START signal again; sends the I2C address code (7bit) and read 

operation 1 (1bit), prepares to read the data, and waits for the slave to respond to the ACK; 
(6) The slave sends an ACK; 
(7) At this time, the slave transmits data from the previously received address, and the host 

receives (8 bits); 
(8) The host sends a NACK; 
(9) Steps 7 and 8 may be repeated many times, and the slave sequentially issues a number of sets 

of data starting from the register address indicated by step 3. Note that each time the host receives 1 
Byte of data, it must send an ACK to the slave so that the slave can continue to send data, except for 
the last 1 Byte. As is shown in Figure 8; 

(10) The host sends a stop signal. 

2.2.5.  Bus Timing Summary 

SDA and SCL have strict timing correspondence. When SCL is low, the slave does not receive 
data. At this time, the host can change the SDA level. When SCL is low, the SDA must be 
solidified, and the data is waiting for reception. If SCL is low, the SDA level changes, that is, a 
violation occurs, and the start and stop signals can be judged according to the order of the level 
change. 

 
Figure 9 The bus timing   

The data transmitted on the I2C bus includes an address signal and a data signal. After the host 
sends a start signal, all slaves on the bus start waiting for the host address broadcast. The host 
transmits 1 byte of data. The first 7 bits are the slave address, the 8th bit is the transmission 
direction, ‘0’ indicates that the host sends data (write), and ‘1’ indicates reception (read). When the 
broadcast address is the same as a device address, the device is selected and an ACK or NACK is 
sent to the host. After the host receives the ACK, it continues to send/receive data, and the 
unselected device ignores the subsequent data signal. 

If the host is conFigured to write data direction, the host starts to transfer data to the slave. The 
data packet size is 8 bits. Each time the host waits for the ACK of the slave it sends 1 byte of data. 
The process is repeated when multi-byte data is sent. If conFigured as read direction the slave starts 
to return data to the host, and the packet size is still 8 bits. Similarly, Each time the slave waits for 
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the ACK of the host it sends one byte of data, and repeating this process will return multiple data. 
When the host wants to stop receiving data, it will feed back NACK and the data transmission will 
end. Each data transfer is always terminated by the host generating the end signal, but if the host 
wishes to continue to occupy the bus, the end signal may not be generated, but the start signal is 
again sent to the other slave. 
 
3 I2C data transmission program design and verification  

 This section takes a host and a slave as an example By using the eUIDE software platform and 
the ELAN EM78P259N microcontroller, the data is transmitted and received between the 
EM78P259N and AT24C02 chips in assembly language. The EM78P259N acts as the master and 
the AT24C02 chip acts as the slave. Finally, the verification result of data transmission, the timing 
relationship diagram between SDA and SCL, the oscilloscope data pulse display, SCL and SDA 
timing pulse display are given. 
 
3.1 Physical layer hardware connection 

The pin 1 of EM78P259N is connected to pin 5 of AT24C02 chip, pin 2 is connected with pin 6 ; 
pin 6 of AT24C02 chip is SCL, pin 5 is SDA, as shown in Figure 10;pin 1 corresponds to P56, pin 2 
corresponds to P52, as shown in Figure 11. Among them, P5 is Port 5, corresponding to IOC50 
input and output controller; SCL corresponds to the second bit of Port 5, and SDA corresponds to 
the sixth bit of Port 5. 

 The output of the 78L05 module is 5V, and the pull-up resistors on SCL and SDA are connected 
to it. 

 
 
 
 
 
 
 
 

 
 

Figure 10 AT24C02 pin Figure               Figure 11 EM78P259N pin Figure[2] 
 
3.2 Programme design 
3.2.1 1Byte data transmission and reception 

The program is divided into two parts. According to the program flow described in 2.2, the 
program includes start and stop signal, the host sending data to the slave, the host receiving the data 
sent by the slave, and the slave responding to the host with the ACK and the host NACK. 
1. The host sends data to the slave 

The ‘Start START_CON’sub-program is called first, and the host then issues the slave device 
addressing code. Note here that the AT24C02 high 4-bit device type code is 1010; according to 
Figure 10, A0, A1, A2 address bits of the slave AT24C02 are grounded, the device address code is 
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000, and finally a write signal 0 is added, and the host issues 8 bits 1010 0000, the timing 
relationship is shown in Figure 12. 

 
 
 
 
 
 

 

Figure 12 Start signal and send addressing codes 

‘DATA_OUT’sending data subprogram is called , firstly pulling down SCL, changing host  pin 1 
as output, then judging output buffer register ‘OUT_buffer’ bit by bit from the highest bit (7 bits) 
(10100000 is stored in it), If it is 1 SDA will be Pulling high, which means outputting data 1, and 
vice versa, indicating outputting data 0. Continue to cycle the left ‘OUT_buffer’ and output bit by 
bit from the highest bit. 

After receiving from the slave, the host waiting for the slave response subprogram ‘ACK_tran’ is 
called. Firstly SCL is pulled low, SDA pulled high, that is, changing host pin 1 as input, and then 
check if SDA is low. If it is low, the data is correctly received. Pull pin 1 low again, set 0, the 
direction becomes output, ready to output data again; otherwise, ‘DATA_OUT’ is called again to 
retransmit. 
Next, send the address where the slave stores the data, here set to hexadecimal 0x01, the process is 

as described above. 
Finally, the data is transmitted (here, 06 as an example is 0000 0110). After receiving the ACK of 

the slave, the host calls the end signal subprogram ‘STOP_CON’, and the data transmission process 
ends. The timing relationship is shown in Figure 13. 

 
 
 
 

 

Figure 13 The timing diagrams of the data 06, ACK and end signals 

 
2 The host requests data from the slave 

The "START_CON" subprogram is called first, and the host then calls the "DATA_OUT" 
subprogram to issue the slave device addressing code 1010 000 and write data signal 0. 

The slave call "ACK_tran"after receiving information, then send the data store address 0x01of 
the slave . 

Different from sending data, the next step is to call the "START_CON" subprogram again, call 
the "DATA_OUT" subprogram again to issue the slave device addressing code 1010 000 and read 
the data signal 1, and call "ACK_tran" to determine if the slave received this set of data. then call 
"DATA_IN" data receiving subprogram. Pull down SCL and change the host pin 1 as input. Then, 
move left to the output buffer register "OUT_buffer" ,continuously judge whether SDA is high or 

8



 

Figure 16 DATA_IN subprogram 

low. If it is high, the lowest position of OUT_buffer is set to 1, otherwise it is set to 0. The data 
transferred by the slave is finally stored in the OUT_buffer. 

The host calls the "NO_ACK" subprogram to send a NACK. Finally, the stop signal subprogram 
"STOP_CON" is called and the receiving data process ends. The relationship between NACK and 
end timing is shown in Figure 14 below.The DATA_OUT and DATA_IN subprogram flowcharts 
are shown in the following Figure.15 and Figure 16.  

 
 
 
 
 
 
 

 
Figure 14 NACK and end time sequence 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15 DATA_OUT subprogram 
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3.2.2 Verification results 
 

Add the unipolar non-return to zero code in the program, and display of the transmission and 
reception pulse of 06:0000 0110 is as shown below Figure 18. 

The DuPont line is used to test the output wave forms of pins 5 and 6 of the AT24C02 chip, that 
is, the timing relationship between SCL and SDA. In this case, in order to continuously display the 
timing relationship on the oscilloscope, it is necessary to add a loop program to the main program, 
but this will damage the chip life, and it is necessary to turn off the power in time after observation. 

The start, end, and data 0000 0110 timing diagrams are as follows. The pulses shown in 
Figure.21 are, in order, a device addressing code and a read signal 10100001, data 0000 0110, a 
NACK signal, and stop signal. 

 
Figure 17 Data transmission results 

 
 
 
  
           
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18 Data pulse 
Figure 19 Start signal  

(SCL is high, SDA is high to low) 

Figure 20 The stop signal(SCL is low, 
SDA is low to high, see last rising edge) Figure 21 Data reception 
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Disadvantages of the I2C bus: 
1 Although in the high-speed mode, the serial 8-bit bidirectional data transmission bit rate can 

theoretically reach 3.4 Mbps,most I2C devices do not support high-speed transmission at present . 
2 slave passive responding to host 
The host is mainly used to drive the SCL, and the slave responds to the host; both can transmit 

data, but the slave cannot initiate the transmission, and the transmission is controlled by the host; 
the slave passively receives the data sent by the host, or responds to the request of data from host. 

Advantages of the I2C bus: 
(1) The current consumption is extremely low; 
(2) Resistance of high noise interference; 
(3) The power supply voltage range is wide; 
(4) Wide operating temperature range; 
(5) Fault diagnosis and debugging are simple, and faults can be traced immediately; 
(6) Adding or deleting ICs in the system will not affect other circuits in the bus; 
(7) The portability is good, and different devices conforming to the protocol can be driven by the 

same set of codes; 
(8) The structure is simple. The host establishes a multi-machine communication mechanism 

through the address code, eliminating the chip selection line of the peripheral device, and the 
system is still a two-wire structure regardless of how many devices are connected onto the bus. 
 
5 I2C communication protocol improvements 

 
This section is aimed at the shortcomings of the slave’s passive response to host, and proposes 

improvements from the physical layer and the protocol layer . 
5.1 Physical layer - adding new communication line 

The original bus protocol physical layer has only one SDA and one SCL. Any device with a 
logical CPU occupies SCL. Other devices can only act as slaves in response to the device which 
occupies SCL and the data is transmitted in accordance with the rhythm of the host SCL. In order to 
realize the two-way communication between the master and the slave on the basis of the original 
two-wire system, a new SCL is added to form a three-wire structure, and the physical connection is 
as follows. 

 
 Figure 23 Three wire system 
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The status of two SCLs of All devices with control SCL function must be detected before 
initiating data transmission. Here, SCL is low to indicate idle, and high to indicate device 
occupancy. 

It is assumed that the clocks of the devices are different, but the difference is much smaller than 
the pulse with the narrowest width. Before the device is to transmit data, it sends a piece of data as 
the command data for detecting conflicts. The specific content can be customized. Here is a 2-byte 
reference scheme. The first four digits of the first byte are the data priority, and the host user 
customizes the urgency of the data to be sent. The highest priority is assumed here to be 1. The 
larger the value, the smaller the priority. The last four digits are spare extension bits, which can be 
expanded when the number of devices is too large. 

The first four bits of the second byte are the device priority and are initially 0001. The benefit of 
the spare extension bits placed between device and data priority is that data prioritization can be 
extended backwards as needed, and device priority can be scaled forward as needed. In general, the 
priority of level 15 can basically meet the needs; the device priority will overflow after 15 conflicts, 
and the probability of two devices transmitting data at the same time is small, which can be satisfied 
for a certain number of devices. In case of special circumstances, the default is extended by two. 

The last four digits are fixed device type codes, as specified by the manufacturer. 
 
 

 
 
 
 
 
 
 
 

The protocol layer of the data transmission remains unchanged, and the data is transmitted in 
units of 8 bits. Here is the agreement: 

1. Each device sends and detects data according to its own SCL frequency, but once a device 
occupies SDA as the host, the frequency of the host prevails; 

2. By using the "line and" feature of I2C itself, if two devices send data to SDA at the same time, 
the level state on SDA presents the result of the two. 

The specific steps of data transmission are as follows: 
The device detects the status of two SCLs before initiating data communication, and can occupy 

as long as one SCL is low. After occupying SCL, It delays 8 pulses according to its own clock 
frequency, and checks the state of SDA at the SCL frequency. If the SDA level changes during this 
time, it is indicating that the device is transmitting data, the delay continues until the “stop” 
signal is detected. 

When the "stop" signal is detected, immediately send 2 bytes of command data to detect the 
conflicting, and at the same time, check whether the level of SDA is the same as the issued 
command according to its own SCL frequency. If a conflict occurs, whichever device first detects 
the difference, the transmission is abandoned, and the other device is used as the host. The 
abandoned device continues to delay until the "stop" signal, and the device priority of both devices 

Figure 24 Detecting conflicting instruction data 
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is increased by one. Repeat the above steps. After the data is completely transferred, SCL and SDA 
are released. 

Since the level on SDA is the result of phase-to-phase, the higher the priority, the later the high 
level appears, and the difference between the device clocks is much smaller than the pulse with the 
narrowest width. After the data transmission is completed, the device will release SCL and SDA. 
Therefore, it is basically guaranteed that data and devices with higher priority can preferentially 
occupy SDA transmission data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5.2 Protocol layer 

Each device continuously detects the SCL level. If the level is low, the SCL is idle, and the 
device can become a temporary host. However, in the case where multiple devices with SCL 
control capabilities are attached to the bus, conflicts are most likely to occur. In the following, 
under the premise of preserving two-wire structure of the physical layer and keeping the signal 
timing of data transmission unchanged, several optimization schemes are proposed. 
1. Carrier sense with collision detection and backoff algorithm 

(1) Collision Detection 
When two or more devices transmit data at the same time, because the SCL frequency is different, 

the Superposition zero point of the start signal (first high and then low) is different from the start 
signal of the device itself, thereby the collision can be detected. 
  

Figure 25 Physical optimization flow chart 
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(2) Stop sending 
After the conflict occurs, all data transmission is stopped. 
(3) Delay determination 
The backoff algorithm by a truncated binary exponential type is used to determine the delay to 

resend data .Firstly determine the basic backoff time, assuming a millisecond. This can be defined 
based on the performance of the device and the average delay time. 

Let K=Min[current collision number, 10], randomly take a number from the discrete integer set 
{0,1,...,2k-1}, and takes a value between 0 and 1 as the first retransmission . takes one between 0, 1, 
2, 3 as the second retransmission,  0 to 7 as the third , ..., and so on, which is equivalent to the lower 
priority of the device. Recorded as r[3]. 

                               Delay = r∙a                                                                       (1) 
Repeat the data after the delay and repeat the above steps. 

2."low priority" arbitration principle 
Suppose there are two host devices with SCL control in a system, which are recorded as 

temporary host 1 and 2 respectively, and their output data are DATA1 and DATA2 respectively. 
Both of them send a start signal to SDA one after the other and the temporary host 1 is slightly 
ahead. Given the " wired and " nature of the I2C system, the signal level obtained on SDA is the 
result of DATA1 and DATA2. 

The following is an example. After setting the start signal, the temporary host 1 sends the data 
"101...", and the temporary host 2 sends the data "100101...". The two temporary hosts must detect 
the SDA signal level of their own output every time a data bit is sent. As long as the test result 
matches the level sent by itself, it will continue to occupy SDA. 

The third bit of the temporary host 1 is expected to transmit "1", that is, to send a high level in the 
third clock cycle, but the third bit of the temporary host 2 is expected to transmit "0". During the 
high period of the clock cycle, in view of the "line-and-" feature, the temporary host 1 will detect a 
mismatched low level, at which time the temporary host 1 should abandon the SDA control, making 
the temporary host 2 the only host of the bus. Thus bus arbitration is implemented. 

From the above process, it can be concluded that neither the temporary host 1 nor the temporary 
host 2 loses data; each temporary host has no priority level, even if the temporary host 1 that first 
sends the start signal does not finally get the SDA control. 

The system actually follows the "low-priority" arbitration principle, which awards the bus to a 
temporary host that sends a low level on SDA first, while other temporary hosts that send a high 
level lose control of SDA [4]. As shown in Figure 27. 

Of course, you can also design a "high priority" mode with the same steps. 
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5.3 Physical Layer and Protocol Layer - Token-ring network 

Token Ring is a physical bus structure. The devices attached to it form a logical ring structure. 
Tokens are transmitted sequentially between devices along the ring bus. The device can only send 
data frames after obtaining the token, so no conflicts will occur. Since tokens are passed in order on 
the ring, access is fair to all devices. 

The inherent disadvantage of Token Ring is the need to maintain tokens, which require special 
equipment for monitoring and management, and cannot work once the token is lost. In view of this 
inherent shortcoming, tokens are rare in the entire computer LAN. Most of the vendors that 
originally provided token network devices have also withdrawn from the market [5], so this method 
will not be described again. Only the possibility is provided.  
5.4 Comparison of advantages and disadvantages 

Physical layer 
Advantages: 
1. Basically optimize the problem of two-way communication between devices; 
2. The SCL is detected by data blocks of two bytes wherein four bits of device priority, four bits 

of data priority, and four bits are used as alternate adjustment bits, which can be adjusted according 
to the number of devices connected in the bus. For a certain number of devices, there is basically no 
conflict. 

Disadvantages: 
1. One more SCL is used, the system complexity increases, and the cost increases; 
2. Because the conflict is to be eliminated, data block for detection of  the SCL is at least 2 bytes, 

which needs additional data cost. 
3. If the SDA level is to be judged, and just the device sends 8 bits of all "0" data, it may disrupt 

the data transmission of the current device. 
Protocol layer 

A common advantage of protocol layer optimization is that there is no need to increase hardware 
cost and system complexity. 

 
 
 

Figure 26 The arbitration principle of low level priority 
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1. Carrier sense /collision detection and backoff algorithm 
Advantages: 
The problem of conflict is solved. When a conflict occurs, all conflicting devices stop sending 

data without additional data interference. 
Disadvantages: 
A certain system delay is introduced, and the priority of the data to be transmitted cannot be 

determined. It is very likely that a very important piece of data is delayed because the number of 
collisions is too many. 

2. "low priority" arbitration principle 
Advantages: 
1. No data is lost between devices that have conflicts; 
2. Each temporary host does not have a priority level, which reduces the additional cost to a 

certain extent. 
Disadvantages: 
The bus control right is randomly determined. Even if the device that sends the data first does not 

have the control of the bus, it may cause important messages to be delayed. 
6 Conclusions 

The I2C bus is a simple two-wire synchronous serial bus. The physical layer only needs two 
buses, SDA and SCL. SDA is used to transmit data, SCL is used for synchronization for data 
transmission and reception; protocol layer stipulates data validity of communication, start and stop 
signals, response, data read and write sequence, address broadcast and so on. SDA and SCL have 
strict timing correspondence. If a violation occurs, the start and stop signals can be judged 
according to the order of the level change. 

Aiming at the shortcomings of the slave passive response to host, an improved scheme is 
proposed based on the communication bus added from the physical layer, carrier sense /collision 
detection and backoff algorithm for the protocol layer, and the "low-level priority" arbitration 
principle .The improvement schemes of the physical layer and the protocol layer each have 
advantages and disadvantages, and the actual application can combine the two to complement each 
other. 
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