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Abstract: Hyperspectral image (HSI) classification requires spectral dimensionality
reduction and spatial filtering. While common dimensionality reduction and
denoising methods use linear algebra, we propose a tensorial method to jointly
achieve denoising and dimensionality reduction.

Firstly, we propose a new method for pre-whitening the noise (PW) in HSI. Then we
propose a method based on quadtree decomposition adapted to tensor data in order
to take into account the local image characteristics in the multi-way Wiener filter
(LMWF) which performs both noise and spectral dimensionality reduction, referred
to as PW-LMWF 4,-(K1, Ko, P3). Classification algorithm SVM is applied to the
output of dimensionality and noise reduction methods to compare their efficiency :
The proposed PW-LMWF4,-(K1, Ko, P3), PW-MWFy,-(K1, K, P3), PCAqg,,
MNFg, associated with Wiener filtering.

1. Introduction

A hyperspectral image (HSI) is a multidimensional array also named as a tensor and it normally consists of
hundreds of spectral bands. So, HSI data has two spatial dimensions and one spectral dimension. Hyperspectral
imaging sensors provide a huge number of spectral bands, typically up to several hundreds. This unreasonably
large dimension of HSI not only increases computational complexity but also degrades classification accuracy
[1]. Reduction of spectral dimensionality has proven necessary to apply classification algorithms. Due to its
simplicity and ease of use, the most popular dimensionality reduction (DR) approaches are principal component
analysis (PCA), independent component analysis (ICA), maximum noise fraction (MNF) and discrete wavelet
transform (DWT) [2]. But those DR methods require a preliminary data arrangement. Indeed, when dealing
with tensor data a first step consists in vectorizing all images yielding matrix data, permitting the use of signal
processing but neglecting spatial rearrangement. To overcome it, [3] proposes a multichannel mathematical mor-
phology operator-based DR method which incorporates the image representation. In this paper, a tensor-based
DR method is proposed to extract spectral principal components by taking into account spatial information.
Moreover acquired images are unavoidably distorted by additive noise [4, 5, 6, 7], which impairs the useful
information and can degrade classification results [8]. As HSIs are normally produced by a series of sensors,
the noise mainly comes from two aspects: circuity noise and photonic noise [9]. Although the photonic noise
has become as dominant as the circuity noise in HSI data collected by new-generation hyperspectral sensors
due to the improved sensitivity in the electronic components [9], the additive circuity noise is still an important
part of noise. Since the denoising methods for those two types of noise are not same, we mainly focus on the
reduction of the additive circuity noise in this paper and the term noise in the following will only refer to the
additive circuity noise. To reduce the noise, a HSI is commonly split into vectors or matrices so any 2D filtering
method could be applied, but this splitting way does not consider the related information between different
bands [10, 11]. So, some approaches, such as tensor decomposition methods [12], have been used to remove the
noise and have shown some prospects in this field [13].

A multi-way Wiener filter (MWF) [14] has been proposed to process a HSI as a whole entity based on
TUCKERS3 decomposition. In MWF| the filter in each mode is computed as a function of the filters in other
modes, which reflects its capability in integrally exploiting the information in each mode of the multidimensional



data. This model has been successfully applied in the reduction of white noise. In practice, HSIs are always
distorted by non-white noise [15], but the MWF method can not deal with the cases of colored noise.

In this paper, a 3-dimensional pre-whitening method (PW) for HSIs to change the colored noise into a white
one is proposed. After that MWF can be used to filter the whitened HSI(PW-MWF). Although MWF or
PW-MWF preserve the data structure of HSI, they also have some negative side effects, in practice, the MWF
provides, generally, blurry restored tensor. It does not consider local details. In order to preserve edges, it is
necessary to apply the filtering (PW-LMWF) on the HSI’s homogeneous parts. Whereas a fixed size window
may not cover homogeneous parts of the image, an adapted quadtree decomposition to HSI permits to process
successively homogeneous blocks.

Since reducing spectral dimensionality is an important issue in the HSI processing field [16, 17] for the
classification improvement, we propose in this paper a multilinear-algebra based DR method by integrating
spectral DR in the PW-LMWF (K, Ko, K3). This new tool is referred to as PW-LMWF4,-(K7, Ko, P3), where
P; represents the number of spectral principal components. PW-LMWFg,-(K1, K», P3) is proposed to reduce
simultaneously non-white noise and spectral dimensionality and to preserve the local image characteristics and
hence improve the classification performance. The experiments of simulated and real-world images are given
to present the performance of classification after denoising by PW-LMWF4,-(K1, K2, P3) and compared to the
most popular DR approaches, i.e., the principal component analysis, referred to as PCAg4,, minimum noise
fraction MNFg, associated with Wiener filtering and PW-MWF 4, method.

The remainder of the paper is organized as follows: Section 2 introduces some basic knowledge about the
multilinear algebra. Section 3 introduces the signal model. Section 4 presents the proposed method and its
formulation of the classical noise reducing problem. Section 5 introduces the proposed spectral dimensionality
reduction method, the PW-LMWFg,-(K1, Ko, P3). Section 6 contains some comparative results concerning the
performance of support vector machine (SVM) classifier [18] when it is applied after either denoising and/or
dimensionality reduction of HSI. Section 7 concludes the paper.

Within the scope of this paper, scalar is denoted by z, vector by x, matrix by X and tensor by X.

2. Multilinear algebra tools

In the following, some basic multilinear algebra tools used in tensor decompositions are introduced.

2.1. n-mode unfolding
X, € RI»*Mn (n = 1,2,3) denotes the n-mode unfolding matrix of a tensor X € RN *12XIs  with size

I, x M,, where M,, = I, x I, with p,q # n (p,q = 1,2,3). The columns of X,, are the I,,-dimensional vectors
obtained from X by varying index 4, while keeping the other indices fixed [14].

2.2. n-mode product

An n-mode product is defined as the product between a data tensor X € RIt*--*IN and a matrix B € R7*I»
in mode n and is used to extend matrix singular value decomposition. It is of size Iy X« - - X I, _1 X I X191 X+ X1y
and denoted by X x,,B. Elementwise, it is (X'}, B)i, ..ip_1 jinsr,in = Zf:zl Tiy iy, in 04 i, Where b, ; denotes
the (j,45) element of matrix B and j =1,---J.

3. Data model

A noisy HSI is modeled as a tensor R € RIt1*12%Is which means I; x I, pixels and I3 spectral bands,
resulting from a pure HSI X € RI1*%2XIs jmpaired by an additive tensor noise N € RI1*72XIs  The tensor R

can be expressed as
R=X+N (1)

The n-mode flattened matrix R, of tensor R € R/**/2%/3 j5 defined as a matrix from R/»*M» with M,, = I,,I,,
with p,q # n. R, columns are [,,-dimensional vectors obtained from R by varying the index i, and keeping
the other indices fixed. These vectors are called n-mode vectors. According to (1) the n-mode flattened matrix

R, can be expressed as
R, =X,+N, (2)

There are several approaches to filter multidimensional data. A common one is to consider the modes of the
tensor data as separable to enable classical 1D or 2D methods. However, that could lead to a loss of inter-
dimension relationships. An interesting approach uses a hybrid filtering relying on the decorrelation of channels.
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In this paper, we propose a tensor method, Tucker3 model, which permits to process the tensor data as a whole
entity.

4. Proposed denoising method

4.1. Pre-whitening procedure

If the noise in HSI is colored, the noise covariance matrix of the n-mode unfolding matrix
cW=F [NnNﬂ £ 071 (3)

where o2 is the variance of the corresponding white noise, I is an identity matrix and the superscript T denotes
the transpose, consequently, MWF cannot effectively remove this type of noise and estimate the expected signal
X. In this paper, we propose a method to modify the colored/non-white noise in R into a white one, then
MWF can be used effectively to denoise the whitened data tensor Ry,. A whitening matrix P,, can be applied
to R. The matrix P, is given by

P, = A;Y/2V] (4)

where V,, is the orthonormal n-mode matrix holding the eigenvectors and A,, is the matrix of the corresponding
eigenvalues of the matrix Cg\? ), for instance

c’ =v,A, VL. (5)

In the non-white noise case, we consider the unfolding matrix

R,=X,+N, (6)
and substitute R,, to
Rw = PTLR?’M (7)
then

with the assumption that the signal is independent of the non-white noise. So, the covariance matrix
E [RWRE;} =P,E [anﬂ PT 41 (9)

that is to say that the non-white/colored noise has been whitened. Thus the MWE algorithm can be applied
to the whitened unfolding data matrix P,,R,,. To get the estimated signal X', an inverse process of whitening
is necessary after we get the denoised image.

4.2. Multi-way Wiener filtering with preserving local image characteristics

The noisy HSI tensor can be expressed as :
R=X+N. (10)
MWEF filter aims at estimating the desired signal X’ from data tensor R using multilinear algebra tools [19] :
X =R x; HY x, H? x3 H®), (11)
W}(le;re X, 18 the n-mode product, that is, the matrix product between n-mode flattening matrix R,, and matrix
H" n=1to 3.

Equation (11) represents the n-mode filtering of data tensor R by n-mode filters H™) n =1 to 3.
The optimal n-mode filter H(™ is computed by the minimization of the mean squared error

2
c(HV,H® H®)=E [HXXH } . (12)

The n-mode filters H(™ are obtained using an Alternating Least Squares (ALS) algorithm.
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Thanks to this procedure any filter along a given mode depends on the filters along all other modes. In this
iterative algorithm, the n-mode filters are initialized to corresponding identity matrices. Every m-mode filter
H(™ fixed, m # n, the expression of the optimal n-mode filter H™ is [19)] :

n n) ~1
H™ = 2Rk (13)
where
Wk = E [X.a"R]] (14)
T = E[R.Q"RT]| (15)

with g™ = H™ @ H®) Q) = HTHM™) @ H®TH®) where m # n, p # n and ® defines the Kronecker
product. By assuming that X,, can be expressed as a linear weighted combination of K, vectors associated
with the largest eigenvalues of E[R,,RI], the optimal n-mode filter H("™ is expressed as [19] :

H™ = v Amym” (16)
where,
2
A\ — (n)? DA C))
AP = digg { 1 A?” K”AF il (17)
1 K

n

in which {A\},i=1,...,K,} and {\l',i =1,...,K,} are the K,, largest eigenvalues of matrices E [R,,q™RZ]

2
and E [RnQ(”)RZ] respectively. The noise power Ug") is estimated by computing the average of the I,, — K,

smallest eigenvalues of E [an(”)RZ]:

I,
()2 1 a
O’,(y )’ = I K. g A (18)
" " i=K,+1

The estimate of H™) can be computed out of the tensor data R.

The computation of n-mode filters H™), n = 1 to 3 involves the n-mode rank values K1, Ko and Ks5. These
values are estimated using the criterion [20].

In practice the MWF provides, generally, blurry restored tensor. It does not consider local details. In
order to preserve edges, it is necessary to apply the filtering on the HSI’s homogeneous parts. Whereas a
fixed size window may not cover homogeneous parts of the image, an adapted quadtree decomposition to HSI
permits to process successively homogeneous blocks. Their sizes are linked with the local characteristics of the
image. Quadtree decomposition has often been used to represent the underlying structure of digital data [21].
A quadtree decomposition is based on the recursive regular decomposition of space into blocks whose sides
are of size power of two. The quadtree decomposition starts from a 1" x T block where T is a power of two
and it divides the array into quadrants if the image is not homogeneous. Each sub-block is then recursively
processed like providing a decomposition in which every block is homogeneous. We adapt, in this paper, the
quadtree decomposition to improve the restoration of details after noise removal. The approach consists in
filtering separately homogeneous regions to preserve local characteristics. The decision function associated with
the split homogeneity test relies on the variance of each block image W to measure its homogeneity [21]:

N .
|
2 2
e = 2 e =) (19)

where 0%, denotes the variance of N, pixel intensities py, in the block W with mean value my,. The comparison
of this variance to an experimental a priori fixed threshold, permits to decide whether to split or not a block
into four sub-blocks. The Local Multidimensional Wiener Filtering (LMWF) method can be summarized as
follows

For each mode: Decompose the tensor into homogeneous sub-blocks using a variance based quadtree method.
Flatten each sub-block along the mode.

Compute LMWF using Equation (11)

Compute the average filtered HSI.

In the next section we show how PW-LMWF can be used to improve the classification. It simultaneously reduces
the non-white noise and spectral dimensionality which leads to improvement of classification algorithms.

12



5. Spectral dimensionality reduction

In HSI context, we are interested in reducing the number of spectral bands by selecting more significant
spectral features in order to improve classification. The principles of PCA are the following: I3 images of
full size I - Iy are considered. Each image is transformed into a vector by row concatenation. Data tensor
R € RIv*I2xIs composed of all I3 images as slice matrices becomes a matrix Rg € R3*P where p = I; x Ir.
The aim of DR is to extract a small number P3 < I3 of features, called principal components (PCs). Therefore
the P3 PCs generate a reducing matrix Z € RP3*P,

Z=A® 12y« R, (20)

Where Vg?’) is a matrix holding Ps selected eigenvectors, A§3) is the diagonal eigenvalue matrix holding the
P3 largest eigenvalues. The data can be reshaped as a tensor Z € R11*72Xs  In tensor formulation [19], the
previously obtained matrix Z is equivalent to the 3-mode flattened matrix of R noted R3. Then Z can be
written

Z =R xz AB 12y (21)

In the same way, we can turn the PW-LMWF-(K;, Ko, K3) into a spectral dimensionality reduction tool.
This tool is referred to PW-LMWFq,-(K7, Ko, P3) in this paper, where P; represents the number of spectral
principal components. PW-LMWF4,-(K7, K2, P3) extracts P; spectral PCs in order to obtain the three-way
array Z € RI1*12xPs - The challenge is carried out thanks to the LMWF g,-(K1, Ko, P3) is to jointly reduce
the dimensionality of the spectral mode and to project the information along the spatial modes onto lower
(K7, K»)-dimensional subspaces. The latter processing permits to compress and to spatially denoise the data.
The PW-LMWF4,-(K1, K», P3) model reads

Z=TRx; 13 (&) X o H® X3 Ag3)71/2vg3)T (22)

where

H®™ is the filter for the n-mode, defined in Equation (13). First, LMWF4,-(K, K, P3) joint uses spatial
and spectral information to extract the spectral principal components. Secondly, PW-LMWF 4,-(K7, Ko, Ps)
denoises the extracted spectral principal components thanks to the estimated spatial projectors, H™ n = 1,2
and the pre-whitening procedure.

6. Experiments

In this section, we focus on the classification results obtained after denoising by PW-LMWFy,-(K71, Ko, P3)
and other methods. Two real-world images are considered for this investigation. The first one, referred to as
HYDICE HSI, was acquired by HYperspectral Digital Imagery Collection Experiment (HYDICE) and has 148
spectral bands ( from 435 to 2326 nm), 310 rows, and 220 columns. The scene, is shown in figure 1 (a). This HSI
is modeled as a tensor R € R310%220x148 411 its ground truth is shown in figure 1 (b). According to the ground
truth, there are 7 land cover classes in HYDICE HSI: field, trees, road, shadow and three different targets.
The second one, referred to as AVIRIS HSI was collected by the airborne visible/infrared imaging spectrometer
(AVIRIS)from a mixed forest/agricultural site at the Indian Pine test site in north-west Indiana. This image
was taken by the National Aeronautics and Space Administration (NASA)/Jet Propulsion Laboratory. The
raw image size is 145 x 145 x 220 (I; = 145, I, = 145, I3 = 220) (figure 1 (c)). This HSI can be represented
as a tensor R € RM5x145%220 an( its ground truth is shown in figure 1 (d). According to the ground truth,
there are 16 land cover classes in AVIRIS HSI: Corn-min, hay-windrowed, stone-steel towers, woods, wheat,
soybean-clean, Oats, soybean-notill, corn, bldg-grass-tree-drives, alfalfa, corn-notill, grass/trees, grass/pasture,
grass/pasture-mowed, soybeans-min.

To compare the classification results quantitatively, the overall accuracy (OA) in percentage is defined as: for
P classes C; (i =1,---,P), if a; ; is the number of test samples that actually belong to class C; and is classified
into C; (j =1,---,P), then OA is OA = ﬁ Zf:l a;; where M is the total number of samples, P is the number
of classes C; and a;; = a; ; for ¢ = j. And to evaluate quantitatively the denoising results, the signal to noise
ratio of image after denoising also named as SNR output is defined as: SNRoyt = 10log;, || X|2/[|X — X||? (dB)
where X means the estimated signal after denoising. Correspondingly, SNR input is defined as: SNR;, =
101og, X2/ |V (dB).

The experiment shows the ability of PW-LMWFy,-(K71, K3, P3) as a DR method; and its robustness in the

presence of non-white noise.
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Figure 1: HST images: (a) Classes in HYDICE HSI, (b) Ground truth, (¢) Raw AVIRIS HSI, (d) Ground truth
of the area with 16 classes

6.1. Classification of real-world HSI

The PW-LMWF 4,-(K7, Ko, P3) is tested on real-world HSIs which are impaired by an additive noise because
of some properties of imaging system. This experiment evaluates the necessity of denoising real-world data [22]
to improve the classification results. For this experiment, (K, K, K3) = (39,39,85) are used to apply PW-
LMWF-(K, K, K3).

Table 1 shows SVM classification results and the SNRy¢ of the denoised images by PW-LMWFy,-( K1, K2, Ps),
PW-MWFg,, PCAg,, PCAg-Wiener, MNFy, and MNF4,-Wiener denoising methods. The OA of SVM classi-
fication obtained from the raw HYDICE HSI is 93.49% and 81.69% from AVIRIS HSI. Therefore, both the OA
values of classification and SNRgyy; results show that denoising and dimensionality reduction are necessary pre-
processing steps. This table shows the DR usefulness. In fact, the DR permits to increase OA for each filtering
method and for this HSI the PW-LMWFy,-(K7, K2, P3) outperforms better PW-LMWF and other methods in
denoising and preserving local characteristics of objects in HSI.

Table 1: OA(%) of SVM results of denoised HYDICE HSI and AVIRIS HSI

HYDICE HSI AVIRIS HSI
Methods OA (%) | SNRoyt (dB) OA (%) | SNRoy; (dB)
PCA-(40) 94.57 36.30 82.30 30.10
PCA-(40)-Wiener 95.60 37.31 84.37 31.62
MNF-(38) 94.71 36.51 84.87 31.38
MNF-(38)-Wiener 95.66 37.83 87.78 32.73
PW-MWF 96.20 38.36 92.41 35.50
PW-MWFyg,-(40,40,80) 96.82 38.79 93.18 35.8
PW-LMWEF-(39,39,85) 97.03 39.01 95.37 38.12
PW-LMWFg,-(39,39,85) 99.88 40.20 99.51 38.91

We notice from the OA values that denoising is a necessary preprocessing step, but as the noise in this
HYDICE HSI is not obvious in the next experiment we test the noise robustness of the proposed method for
reducing more non-white noise in HSIs than in previous images.

6.2. Classification in noisy environment

In this experiment, we test the noise robustness of the PW-LMWFy,-(K7, K2, P3) method, and the results
highlight the advantage of applying this method on HSIs before classification. For this issue, non-white noise
[15] is added to real-world HSI data with SNR;, varies from 15 to 40 dB into the real-world HSI. We compare
the classification results after applying our proposed method and other denoising methods.

Figure 2 shows the OA values obtained from the denoised HSI and shows that the PW-LMWFy,-(K7, Ko, P3)
method permits to reduce jointly the spectral dimension and noise which is of great interest for SVM classifier.
The comparison of the OA values calculated for each preprocessing of DR and denoising, shows that multilinear
algebra-based DR method PW-LMWFg,-(K1, K», P3) leads to better classification results than PCA4,-Wiener,
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PW-MWF4, and MNF4,-Wiener considered in this experiment.
Figure 3 (a) presents the SVM classification results obtained from a raw AVIRIS HSI, figures 3 (b)-(e) are the

(a) (b)

Figure 2: Spectral dimensionality reduction outcome for classification: (a) Raw HYDICE data OA = 93.49, (b)
PCAg4,-Wiener OA = 95.60, (c) MNFy,-Wiener OA = 95.66, (d)PW-MWFg, OA = 96.82, () PW-LMWFy,
OA =99.88

results obtained after denoising by different methods where 16 classes are used for classification of this AVIRIS
HSI. It can be seen that the 2D Wiener filtering applied on spectral components obtained by PCA permits
to improve the OA value. This experiment shows that the tensor methods can do better as a preprocessing
procedure than 2D methods for the classification and PW-LMWF4, method shows its significant advantage
compared to PW-MWF and 2D methods.

Figure 3: SVM classification results of raw AVIRIS.: (a) Raw AVIRIS HSI OA = 81.69, (b) PCA4,-Wiener OA
= 84.37, (¢) MNF4,-Wiener OA = 87.78, (d) PW-MWF,, OA = 93.18, () PW-LMWFy, OA = 99.51

Figure 4 presents OA values obtained from the denoised HYDICE HSI and AVIRIS HSI also shows that
the PW-LMWF4,-(K7, Ko, P5) performs much better than PW-MWF and other methods particularly when the
SNRj, value is low. All these results demonstrate the advantage of using the proposed method, this advantage
is much more significant with AVIRIS HSI where the relevant features are localized on some regions of image.
From the presence of such small local features as we can expect the proposed method provide better results
compared to other methods, because PW-LMWFg,-(K7, K», P3) permits to reduce simultaneously the spectral
dimension and the dimensions of the spatial subspaces with preserving local image characteristics which is of
great interest for SVM classifier.
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Figure 4: OA of SVM results of denoised: (a) HYDICE HSI, (b) AVIRIS HSI

7. Conclusion

With the advances of the electronic components, the reduction of photonic noise has become an impor-
tant task in denoising HSI data collected by new-generation hyperspectral sensors. For this case, to reduce
noise, a novel tensor-based algorithm, called PW-LMWF4,-(K7, K», Ps), is proposed for joint noise and di-
mensionality reduction with preserving local image characteristics. This joint spatial-spectral processing is
cross-dependent thanks to the ALS algorithm. To reduce the colored/non-white noise in HSI, a pre-whitening
method is proposed based on a two-stage process (PW-LMWF) composed of a noise-whitening procedure and
a LMWF filter. We focused on the ability of PW-LMWFy,-(K7, Ko, P3) as a preprocessing algorithm that
improves SVM classification result applied to real-world AVIRIS and HYDICE data. Quantitative results based
on OA criterion evaluate the impact on the spatial ranks, (K7, Ks) values, and compare the performance with
selected dimensionality reduction methods. Indeed in comparison with PCAg,, PW-MWF4, and MNFg,, the
PW-LMWFy,-(K1, Ko, P3) permits to extract spectral components by taking into account spatial information
by simultaneously estimating spatial filters to denoise them. The comparison with selected hybrid filters, which
perform 2D-spatial filtering of the retained spectral components, permits to appreciate the denoising efficiency
of our method, in the application of classification in noisy data.

From the analysis and the comparative study against other similar methods in the experiments, it can be con-
cluded that PW-LMWF4,-(K7, Ko, P3) method can effectively reduce white or colored noise from HSIs. It is
also necessary to take into account the colored noise when dealing with HYDICE and AVIRIS data.

These promising results encourage us to extend our experiments on the HSIs distorted by both photonic
noise and spectrally correlated noise and on other hyperspectral data, for instance HSIs obtained from new
generation high-resolution hyperspectral sensors.
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