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Abstract. With the rapid economic development, people's demand for control of pollution 
emissions more and more intense. Thermal power plants must find ways to keep units 
running economically and efficiently, meet the minimum energy efficiency and emission 
standards and meet the environmental requirements. So we propose the algorithm of fast 
time series rule finding based on motif searching in this paper. We can use it to find what 
the reason is to achieve the optimal conditions of thermal power plants. What's more, the 
optimal time for the power plant units can be longer, the cost of the plant will be lower, and 
the goal of energy saving and emission reduction can be achieved. It has a guiding 
significance on the thermal power plant energy conservation and cost increasing. 

1. Background 

In September 3, 2016, China's National People's Congress (NPC) approved China's accession to the 
Paris Agreement on climate change. The agreement states that the global response to keep the 
global average temperature 2℃higher than the pre-industrial levels and make efforts to keep the 
temperature within 1.5 ℃. So thermal power plants need to achieve energy saving. 
However, in the actual operation of thermal power plants, because thermal power units can't run at 
full capacity in long term, the load of thermal power units change frequently, which results in a 
serious deviation from the designed load of the power plant. As the optimal conditions are difficult 
to quickly retrieve large amounts of data, and the staff is difficult to know what causes the optimal 
conditions.  
Some works proposed to the discovery of time series rule algorithm [1–6]. However, there is too 
many meaningless time series motifs and rules, these algorithms do not meet the needs of thermal 
power plants. We would like to know what causes are to achieve the optimal conditions of thermal 
power plants, rather than the future trend of thermal power plant time series. In view of these 
problems, we propose FTSRFMS algorithm in this paper. 
The remaining part of this paper is organized as follows: Section 2 contains a series of notations and 
definitions which is needed in our time series algorithm. In Section 3, we introduce our method. 
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The experiments on FTSRFMS and visualization will be discussed in Sections 4, respectively. 
Section 5 offers concluding remarks and directions for future work. 

2. Notations

We will give some definitions which are used in this paper before describing our algorithm. It is 
necessary to define the existing problems and explain our solution. Now we start with definitions of 
the time series: 
Definition1: A 
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Time Series T t t t   is an ordered set of real-valued numbers, the 

length of T  is n . 
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t t t  are data points of T which have the same time interval. A time series is often very large, 

sometimes it may contain billions of data. A local subsection of time series is termed as a 
subsequence. We need to define a distance metric to measure the distance between two 
subsequences. We use the ubiquitous Euclidean distance measure. 
Definition3: The distance between two subsequences 
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Euclidean distance  is not sufficient to support cluster clustering for time series. However, it is 
still a useful subroutine to speed up our broader approach. As described in [7–10], the Euclidean 
distance is a fast and powerful distance measurement [11].  
In this work, we use a version of the minimum description length (MDL) as a time series which was 
applied in some previous studies, such as [1, 12–15]. The MDL principle is described as follows: 
Definition7: Description Length DL : a description of the time series T  length DL  is the total 
number of bits, it represents: 

( ) ( )DL T n H T                                                 (2) 
where n  is the length of T . Note that a hypothesis H  is a time series used to encode more time 
series of the same length [12]. 

3. Our Proposed Approach

The main idea of the algorithm of FTSRFMS is to match all the time series motifs from a single 
time series T, which is similar to the time subsequence S. We will create the rules from these motifs, 
calculate the bit save scores of these rules, and get the best time rule. Finally, we will find the 
corresponding antecedents based on these rules. 
In lines 1 to 7 iterate over all possible split points of the time subsequence S, and calculate the 
quality score, and the quality score is described in the Algorithm 2. In line 8 calculates the highest 
quality scores . In lines 9 to 11 find the split point spt, which is corresponded to the highest quality 
score. The split point is used to split consequent C and antecedent a. Eventually, the Function 
returns C, a, and S. 
In line 1 of Algorithm 2 finds a set of subsequence in the time series T that are similar to the time 
subsequence S, which is described in Algorithm 3 in detail. In line 2 uses the Euclidean distance to 
obtain a threshold of the distance, and then get the highest quality score of S described in detail in 
Algorithm 4. In line 3 the maximum number of bits, which is stored in discovered time rule, is 
calculated and eventually the value is returned as the quality score of the rule. It is described in 
Algorithm 5. 
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5. Conclusion and Future Works 

We have introduced the problem of discovering rules in time series and formalized an algorithm to 
efficiently locate them. Our algorithm needn't to find motif in time series, so our algorithm is much 
more efficient than traditional time series rule algorithm. Generally speaking, our algorithm 
achieves the expected goal. Experimental results on data sets of the power plant demonstrate that 
the algorithm is very effective. 
Although the present approach solves the problem of thermal power plants, the idea is also suitable 
for solving other problems.  
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