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Abstract: Over the past decade, artificial intelligence has reached a stage of rapid 
development, and deep learning has played a main role in this development. Despite of its 
strong ability to simulate and predict, deep learning is faced with the problem of large 
computational complexity. At the hardware level, GPU, ASIC, FPGA are ways to solve the 
huge amount of computing. This paper will explain the deep learning, FPGA structure and 
the reason why the use of FPGA to accelerate the deep learning is effective. Also, it will 
introduce a recursive neural network (RNN) implementation on the FPGA platform.  

1. Introduction

The rapid growth of data volume and accessibility in recent years, Making the artificial
intelligence algorithm design concept has changed[1].The practice of manually creating algorithms is 
replaced by the ability of computers to automatically acquire combined system from a large number 
of data, resulting in significant breakthroughs in critical areas such as computer vision, speech 
recognition, and natural language processing[2]. Deep learning is the most commonly used in these 
areas of the technology, the industry has also been of great concern.However, the depth learning 
model requires a very large amount of data and computing power, and only better hardware 
acceleration conditions can meet the demand of the existing data and model size that continues to 
expand. 

Long short-termmemory (LSTM)is a recurrent neuralnetwork (RNN)architecture 
(an artificialneural network, deep learning)published[1] in 1997 by Sepp Hochreiter and Jürgen 
Schmidhuber. Like most RNNs, an LSTM network is universal in the sense that given enough 
network units it can compute anything a conventional computer can compute, provided it has the 
proper weight matrix, which may be viewed as its program. Unlike traditional RNNs, an LSTM 
network is well-suited to learn from experience to classify, process and predict time series when 
there are very long time lags of unknownsize between important events.  

The existing solution uses a graphics processing unit (GPU) cluster as a general purpose graphics 
processing unit (GPGPU)[3], but the field programmable gate array (FPGA) provides another 
solution worth exploring.The growing popularity of FPGA design tools makes it easier for top-level 
software to be used in deep learning areas, making FPGAs easier for model builders and 
deployers[4]. The FPGA architecture is flexible, allowing researchers to explore model optimization. 
outside a fixed architecture such as a GPU[5].  At the same time, FPGAs are more powerful in 
terms of unit energy consumption, which is critical to the study of large-scale server deployments or 
resource-constrained embedded applications. This article will introduce a recursive neural network 
(RNN) implementation on the FPGA platform. 
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