

Clock Glitch Fault Injection Attacks on an
FPGA AES Implementation

Yifei Qiao1,a, Zhaojun Lu2,b, Hailong Liu3,c and Zhenglin Liu4,d
1,2,3,4Huazhong University of Science and Technology, Wuhan, China

a1536464614@qq.com, b562576098@qq.com, Cliuhilon@gmail.com, dliuzhenglin@hust.edu.cn

Keywords: AES, Fault injection attacks, Clock glitch, FPGA

Abstract. The Advanced Encryption Standard (AES) algorithm has been widely used to
secure communication systems. However, the encryption algorithm is vulnerable to fault
injection attacks and various attack methods have been studied. Some methods are just
proposed in theory and have not been validated in practice. In this paper, we actualize a fault
injection attack on an FPGA AES implementation. We propose a method to generate the
highly accurate clock glitch to inject faults in the encryption process. We show that if the
frequency of the clock glitch is carefully selected, only 6 faulty ciphertexts are necessary to
discover the secret key.

1. Introduction

Cryptographic algorithms and cryptographic devices are being widely used to meet high security
requirements. Unfortunately, the devices can leak secret information (such as the secret key) through
side channels when performing the encryption. Fault attacks have proven to be an effective type of
the side channel attack. Boneh, Demillo and Lipton [1] in 1997 firstly introduced the use of faults
occurred during the execution of an encryption algorithm for attacking it and finding the secret key.
Biham et. al. [2] proposed the concept of Differential Fault Analysis (DFA) on the Data Encryption
Standard (DES). The DFA can discover the key from the analysis of one or multiple couples {correct
ciphertext, faulty ciphertext}. AES is the substitute of DES and the fault attack on AES has been a
popular research topic. Bloemer et. al. [3] proposed the DFA attack on the AES algorithm by
changing a single bit during the first round of the encryption. The single-bit attack can recover the
key in principle, but the strict requirement on the fault injection makes it practically infeasible. In [4],
Dusart et. al. presented a more general fault model by injecting a single byte fault between the last
two round. The multi-byte fault method is proposed by Moradi et. al. [5], however, this attack has not
yet been performed in practice.

The fault injection techniques include: power supply voltage variation, injection of glitches in the
clock signal, temperature variation, electromagnetic disturbances, or irradiation by a laser beam. The
method of clock glitch is low-cost, easier to control the position of the faults, and will not destroy the
target device. Endo et.al. [6] presented an on-chip clock-glitch generator with the accuracy of 0.17ns.
Although the design of the generator is ingenious, it’s not precise enough for our fault injection
attacks.

In this paper, we propose a highly accurate clock-glitch generator. Further, we validate the fault
attack model in [5] by attacking an AES hardware implementation on an Altera FPGA development
board. We show that the key can be discovered using only 6 faulty ciphertexts, if the frequency of the
clock glitch is set appropriately.

23

Journal of Electrotechnology, Electrical Engineering and Management (2017) Vol. 1, Number 1
Clausius Scientific Press, Canada

The rest of this paper is organized as follows: we briefly introduce the AES algorithm and the
attack methods.The next section presents our implementation of AES, the clock-glitch generator and
the experimental setup. Then, we show the experimental results. Finally, the work is concluded in the
last section.

2. Fault Injection Attack on AES

The Description of AES Algorithm. The AES is applied to encrypt or decrypt data blocks of 128
bits by using secret key of 128, 192 or 256 bits. The total number of encryption rounds is decided by
the key length. In this paper, the key length is 128 bits and the number of encryption rounds is 10.
Except the last round, each round consists of four transformations: SubBytes (SB), ShiftRows (SR),
MixColumns (MC), and AddRoundKey (ARK). Compared with other rounds, the last round does not
execute the MixColumns function.
Attack Methods. The attack methods proposed in [5] inject faults at the input of MixColumns of the
ninth round. The flow of the AES encryption from the last MixColumns function (in the ninth round)
to the end is exhibited in figure 1. As presented in [5], we could consider each column of the
MixColumns output in the ninth round independently. So in figure 1, we only consider the first
column. Gray cells represent the faulty bytes and their locations in the MixColumns output state
matrix are (1, 2, 3, 4). In the faulty ciphertext, the locations of faulty bytes become (1, 14, 11, 8). We
gather multiple faulty ciphertexts using the same plaintext and key, but injecting different faults.
Analysing the correct and faulty ciphertexts, we are able to calculate 4 bytes of the tenth round key
(K10). Performing this methods for other three columns, all bytes of K10 will be found. As a result,
we can discover the secret key by knowing one round key [4]. According to the number of faulty
bytes in one column, the faults we injected can be classified into two models: one byte undisturbed
(Model 1); all of 4 bytes disturbed (Model 2). Obviously, the faults in figure 1 are under Model 2.

B E

A4

A3

A2

A1

B4

B3

B2

B1

C4

C3

C2

C1

D8

D11

D14

D1

E8

E11

E14

E1

SB SRARK ARK

K9 K10

A C D

MC

Fig.1 The encryption flow from the last MixColumns to the end

3. The Fault Injection Attack Setup

Implementation of AES. We implement the AES algorithm using Verilog HDL. The architecture of
the implementation is given in figure 2. The control module gets the key and plaintext loaded when
the ‘ld’ signal is asserted. When the encryption is completed, the ‘done’ signal will be asserted. The
key expansion module generates each round key and provides it to the round function module. The
round function module iterates 10 times to generate the ciphertext. The implementation performs the
whole encryption scheme in 11 clock cycles(1 cycle for key expansion and 10 cycles for the
encryption,). The design is downloaded on an Altera DE2-115 EP4CE115F29C7 development board.

24

Control

Key Expansion

Round Function Output

ld

key

plaintext

done

ciphertext

Fig. 2 Implementation of AES

Clock-glitch Generation. The attack methods inject faults in the ninth round of encryption algorithm,
so we just need to supply a faster clock for the ninth round and normal clock for other rounds. In
order to get the more accurate clock glitch(the faster clock) than that can be generated by using the
on-chip PLL circuitry, we use an external clock generated by an Agilent E4438C 6GHz Waveform
Generator. The external clock is divided by 4 to generate the normal clock and divided by 2 to
generate the faster clock. The output clock of the clock-glitch generator is observed through an
oscilloscope and exhibited in figure 3. Figure 3 shows that the fifth clock cycle is the clock glitch and
is twice the frequency of other cycles. The position of the clock glitch in the encryption clock can be
controlled and is set to the tenth clock cycle in our experiments(one cycle for key expansion before
encryption). The clock-glitch generation module is also implemented on the DE2-115 development
board.

Fig. 3 The output of clock-glitch generation

Experimental Setup. The figure 4 shows our experimental setup. The waveform generator provides
an external clock for the FPGA board. The FPGA board performs the clock-glitch generation and the
encryption algorithm. Through JTAG UART, the PC(personal computer) downloads the design to the
board, sends the plaintext and key to the board, and deals with the data received from the board.

25

Fig. 4 Experimental setup

4. Experimental Results

The experimental results is given in figure 5. According to figure 5, the maximum operation
frequency for our design is 113.7 MHz. There is no faulty state when the frequency of the clock glitch
is 113.7 MHz. The frequency of the glitch is increased gradually in steps of 0.1 MHz by rising the
frequency of the external clock in steps of 0.05MHz. Simultaneously, we use SignalTap II to record
the faulty bytes in the first column of the state matrix at the beginning of the last round. We gather
500 ciphertexts caused by the same frequency of the clock glitch.

In figure 5, with the increase of the clock glitch frequency, the number of fault-free ciphertexts (no
fault) is decreasing and the number of faulty ciphertexts under Model 2 is increasing. From 113.7
MHz to 114.8 MHz, the number of ciphertexts under Model 1 is increasing. After this, Model 1 faults
decrease and Model 2 faults start to dominate from 114.9 MHz.

Fig. 5 The distribution of the encryption results

To recover the secret key, Model 1 only needs 6 faulty ciphertexts, but Model 2 needs
approximately 1500 ciphertexts. In figure 5, Model 1 faults dominate from 113.7 MHz to 114.5 MHz,
during this period, Model 2 faults hardly occur. We could gather ciphertexts during this period and
only 6 faulty ciphertexts are needed to find the key.

5. Summary

This paper proposes a highly precise clock-glitch generator using an external clock. We performed
the clock glitch fault injection attack on AES in practice. We injected the clock glitch in the ninth
round of encryption. Through adjusting the external clock generator step by step, the maximum
operation frequency of our design and the proper frequency period of the clock glitch for fault attacks
have been found. When the frequency is set carefully, 6 faulty ciphertexts are enough to recover the

26

secret key. Experimental results show that the clock glitch fault attack presented before is low-cost,
non-intrusive, and effective.

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (61376026).

References

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p. 119

[1] D. Boneh, R.A. DeMillo, and R.J. Lipton: On the importance of checking cryptographic
 protocols for faults, Proc. EUROCRYPT (1997), p. 37–51.

[2] E. Biham and A. Shamir: Differential fault analysis of secret key cryptosystems. Proc. CRYPTO
 (1997), p. 513–525.

[3] J. Bloemer and J.P. Seifert: Fault based cryptanalysis of the Advanced Encryption Standard (AES), Proc.
FinancialCryptogr. (2003), p. 162–181.

[4] P. Dusart, G. Letourneux, and O. Vivolo: Differential fault analysis on A.E.S., Appl. Cryptogr. Netw. Security,
vol. 2846 (2003), p. 293–306.

[5] A. Moradi, M. T. M. Shalmani, and M. Salmasizadeh: A generalized method of differential fault attack against
AES cryptosystem, Proc. Int. WorkshopCryptogr. Hardware Embedded Syst. (2006), p. 91–100.

[6] S. Endo, T. Sugawara, N. Homma, T. Aoki, and A. Satoh: An on-chip glitchy-clock generator for testing fault
injection attacks, Journal of Cryptographic Engineering (2011), p. 265–270.

27

