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Abstract: This paper addresses the scheduling problem of parallel machines with machine 
eligibility restrictions and special jobs with the objective of minimizing the makespan. Each 
job can only be assigned to a specific subset of the machines. And the processing times of 
jobs are restricted to one of two values, 1 andε. A semi-matching model G=[J∪M,E,W] is 
presented to formulate this scheduling problem. We propose an approximation algorithm, 
which is composed of two steps, that is, initial solution construction and initial solution 
improvement. The initial solution construction algorithm is developed to build a feasible 
solution by performing a simple greedy heuristic method. The initial solution is used as a 
starting point by the improvement algorithm. The main idea of the improvement algorithm is 
to construct alternating tree, then to find the optimal alternating path for each vertex in M 
iteratively. In order to improve efficiency, the length of each path in alternating tree is limited 
to 4 at most.  

1. Introduction

We consider a special case of parallel machine scheduling problem with machine eligibility
restrictions and special jobs. Each job can only be assigned to a specific subset of the machines. And 
the processing times of jobs are restricted to one of two values, 1 andε. The objective is to minimize 
the makespan.  

Most parallel machine scheduling problems are NP-hard. Due to the problem complexity, the 
development of approximation algorithms has received increasing attention in recent years. 
DAMODARAN[1] addresses parallel batch processing machines with unequal job ready times, and a 
simulated annealing algorithm is presented. WANG[2] presents a hybrid differential evolution 
algorithm for parallel machine scheduling with splitting jobs to minimizing the makespan. TAN[3] 
presents a SPT (shortest processing time ) algorithm for two parallel machines scheduling problem 
with given unavailable periods. Whenever a machine becomes idle, the SPT algorithm assigns the job 
with shortest processing time on that machine. TAN prove that the SPT algorithm is 3/2-approximate. 
LIU[4] deals with a parallel machines scheduling problem with linear increasing processing time, and 

propose a LS (list scheduling) algorithm. Liu prove that the LS algorithm is  
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 -approximate,

where bmax is the maximum deteriorating rate of job. 
In this paper, a semi-matching model G=[J∪M,E,W] is presented to formulate the studied 
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problem into an optimal semi-matching searching problem. We propose an approximation algorithm, 
which is composed of two steps, that is, initial solution construction and initial solution improvement.  

The remainder of this paper is organized as follows. In section 2, a formal definition and the 
semi-matching model for the scheduling problem under studied are presented. In section 3, the initial 
solution construction algorithm based on heuristics is described in detail. The improvement algorithm 
is presented in section 4. This paper concludes with section 5. 

2. Problem Definition and Semi-matching Model 

The problem studied in this paper can be formally described as follows. We are given m (m≥1) 
parallel machines M ={ M1, M2, M3,......, Mm} and n jobs J ={ J1, J2, J3,......, Jn}. Machine eligibility 
restrictions are considered, which imply that any job Jn can only be assigned to one of the machine in 
a certain subset  of M. And the processing times of jobs are restricted to one of two values, 1 andε. 
We select the minimization of makespan as the optimization criterion. 

In this paper, the semi-matching theory is adopt to model the studied problem. Let G = [J∪M, E,W] 
be a weighted bipartite graph, where J and M are two disjoint sets of vertices, and E J M   is a set 
of edges. For convenience, a vertex of J and a vertex of M are called J-vertex and M-vertex 
respectively. Each J-vertex represents a job, and each M-vertex represents a machine. If an edge eij 

E connects JiJ to MjM, whose weight is W(eij), it means that Mj can process Ji, and the weight of 
edge eij represents the time needed by Mj to finish Ji. 

A set F E  is a semi-matching if each J-vertex is incident with exact one edge in F[5]. Obviously, 
a semi-matching F corresponds to a assignment of jobs to machines. If F is a load balanced 
semi-matching, we can minimize the completion time. As shown in Fig.1(a), we represent the 3 
parallel machines and 5 jobs as the vertices of a weighted bipartite graph. Fig. 1(b) is a semi-matching 
of the graph shown in Fig. 1(a). 

 

Fig.1. A example of a weighted bipartite graph and one of its semi-matchings 

Given a edge eijF, let Ji and Mj be two endpoints of eij. We say that eij is a matched edge, Ji and 
Mj are matched vertices with respect to F, and Ji is a neighbor of Mj, respectively.Let N(Ji) denote the 
set of neighbors of vertex Ji  J. Similarly, N(Mj) is defined for a vertex Mj  M. Given a 
semi-matching F, the load on vertex MjM is defined as the sum of weights of the edges that are 
incident with Mj, denoted by ( )F jM :  

( )F jM = ( )
ij

ij
e F

W e

                                                                                                                                                    (1) 

The goal of this paper is to find a semi-matching with balanced load on M-vertices. The objective 
used in this paper is to minimize the maximum load of V-vertices, which can be expressed as  

min(max{ ( )})F jM                                                                                                                                                   (2) 
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3. Initial Solution Construction Algorithm based on Heuristics 

Here, we present our initial solution construction algorithm based on heuristics.  
Algorithm 1. initial solution construction algorithm 
Input：weight bipartite graph G = [J∪M, E,W]. 
Output：initial solution Fi. 
Step 1. Initialization: unfinished job set Jw←J, Fi← . 

Step 2. If Jw← , output Fi; otherwise, randomly select a currently available job Jx from Jw. 
Step 3. Select the eligibility machine My of Jx with the minimum workload. 
Step 4. (Fi)xy←1. 
Step 5. Delete Jx from Jw, go to Step 2. 

4. Improvement Algorithm based on Alternating Path with Limited Length 

For a given semi-matching F in G, edge ije F and ije F are called matched edge and unmatched 
edge, respectively. F-alternating path is a simple path that its edges are alternately matched and 
unmatched. 

Let P be a F-alternating path with respect to a semi-matching F, and the edges in P are denoted by 
E(P). The notation F⊕E(P) is defined as the symmetric difference of sets F and E(P); i.e. Fn = F⊕
E(P)=(F-E(P))∪(E(P)-F ). If the length of P is even, then Fn is a new semi-matching by switching 
matched and unmatched edges along P. After the operation of symmetric difference, the number of 
edges in semi-matching does not increase or decrease, but the load distribution among M-vertices 
changes. F-alternating path P is called a cost-reducing path, if max{ ( )} max{ ( )}

nF j F jM M  . 
In all alternating paths starting from Mj and all related semi-matchings, the optimal semi-matching 

Fo is a semi-matching with the smallest max{ ( )}
oF jM , and the corresponding  alternating path is 

called the optimal alternating path. 
The algorithm based on alternating path is simple to implement, but it is needed to search the 

whole alternating tree rooted at each vertex in M to find the optimal alternation path. In theory, this 
kind of algorithm can yield the optimal solution. But for the large-sized problem, the running time of 
traversing the whole alternating tree is too costly. In the study of bipartite graph matching, it is a 
practical method to restrict the length of the path to reduce the size of the searching tree[6]. Therefore, 
we follow this principle, and our improvement algorithm only use short alternating paths and circles 
which contain at most 2 edges in semi-matching to decrease the maximal load of Fi.  

To ensure that the new semi-matching produced by the improvement algorithm is legal, all legal 
short alternating paths and circles are shown in Fig. 2. For convenience, the short alternating path and 
circle are all called short path. 

The main idea of the improvement algorithm is to start with a initial solution and to decrease the 
maximal load of the semi-matching by a local improvement, which searches the optimal short path 
for every vertex MjM iteratively. In every iteration, we first build a alternating tree by BFS 
discipline to find out the optimal short path, and then perform the symmetric difference operation to 
produce a new semi-matching with smaller maximal load. The detail of the improvement algorithm is 
as follows. 

Algorithm 2. initial solution improvement algorithm 
Input: initial solution Fi. 
Output: near-optimal solution Fa. 
Step 1. initialization: Fa←Fi, Mt←M. 
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Step 2. select a vertex MjMt, build the alternating tree T rooted at Mj, where edges in Fi are 
directed from M-vertex to J-vertex and edges not in Fi are directed from J-vertex to M-vertex. 

Step 3. find the optimal short path 
jMP . 

Step 4. Fa←Fa⊕E(
jMP ). 

Step 5. delete Mj from Mt, and if tM  , goto Step 2. Otherwise, output Fa. 
Lemma 1. Let Fo be the optimal semi-matching of G = [U∪V, E,W], and Fa be a near-optimal 

semi-matching yielded by our algorithm. The maximal loads of Fo and Fa are denoted by max(Fo) and 
max(Fa), respectively. For Fa, if there is no short path that can decrease max(Fa), then: 

max(Fa)≤ (1 ) max(Fo)                        (3) 

Proof. Let Ea=Fa-Fo and Eo= Fo-Fa be two sets of edges. Obviously, we can build short paths by 
selecting edges from Ea and Eo alternately, and Fa can be improved to Fo by the operation of the 
symmetric difference between these short paths and Fa. 

Let P be a short path , which consists four edges selecting from Ea and Eo alternately, as shown in 
Fig. 3. The four edges of P are denoted by ei、ej、ek and el, and the edges of ei and ek belong to Ea, the 
other two edges of ej and el belong to Eo . The M-vertices in P are denoted by Mi, Mj and Mk, and let Mj 
be the vertex with the maximal load in Fa and Fo.δa(Mj) andδo(Mj) represent the load on Mj in Fa 
and Fo, respectively. Other notations used here include: 

Eaj: the set of edges connecting Mj in Fa. 
Eoj: the set of edges connecting Mj in Fo. 
Ecj: intersection set of Eaj and Eoj. 

M-vertex

J-vertex

unmatched edge

matched edge  

Fig.2. Legal short paths 

 

Fig.3. Short path P 

If P is not an optimal short path, the reason for this must be that the load on Mk after switching 
operation exceedsδa(Mj). Therefore, Eq.4 must hold. 
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( ) ( ) ( )k j lW e W e W e                                                                                                                             (4)                   

    ( ) ( ) ( )k l jW e W e W e                                                                                                                           (5) 

Let 
( )

( )
l

j

W e

W e
  , then Eq.(13) is converted into Eq.6. 

( ) (1 ) ( )k jW e W e                                                                                                                                 (6) 

In Fa, the load on Mj can be defined as ( )a jM = ( )
aje E

W e

 . 

And because: 
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In conclusion, 

δa(vj)≤ (1 ) δo(vj)                                                                                                                       (7) 

Thus,                 

max(Fa)≤ (1 ) max(Fo)                                                                                                                    (8) 

From Eq.8, we can know that the worst-case ratio of the improvement algorithm is 1  .  

5. Summary 

We have developed an approximation algorithm for the parallel machines scheduling problem 
with machine eligibility restrictions and special jobs, which is composed of 2 steps of initial solution 
construction and initial solution improvement. The initial solution is generated by a heuristic 
algorithm. In the improvement algorithm, we restrict the length of alternating path to 4 in order to 
improve the efficiency. And we prove that the worst-case ratio of the improvement algorithm is 1  . 
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