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Abstract: Based on the highly successful application of quaternions for attitude estimation,
this paper proposes an approach to position, velocity and attitude estimation for Micro
Aerial Vehicles(MAVs) using dual quaternions. The states are represented in dual
quaternion and time continuous states propagation model are derived via dual quaternion
time update equation. At the same time, the error propagation equations based on additive
error model is derived and implemented to fuse data from multiple sensors using Kalman
Filter. Simulation results showed that the combination of multiple sensor data highly
increase the estimate precision. In this paper, the sensor fusion algorithm is pivoted around
EKF(Extended Kalman Filter) and dual quaternion.

1. Introduction

Micro Aerial Vehicles(MAVs) will play an increasingly important role in disaster management,
industrial inspection and environment conservation. For such operations, navigating system
onboard provides estimates of their states and even environment information to perform tasks
accurately and agilely. For minimal cost and weight, Inertial Measurement Unit (IMU) is generally
implemented in combination with other sensors.

This paper proposed a fusion framework using IMU with other sensors based on dual quaternion
for MAVs. Dual quaternion is a powerful mathematical tool representing translation and rotation
transformations of rigid body and have been shown to be the most efficient and most compact form
of representing rigid body motion[5]. The inertial motion model have been exploited in detail in
references [1][3] and the model is unified in dual quaternion formulation. The proposed expressions
are verified through experiment with simulated data. Further, dual quaternion error state differential
equations are derived used in EKF framework to fuse data from multiple sources.

Subsequent sections are structured as follows. Section Mathematical Preliminaries briefly
explains the theory on quaternion, dual number, dual quaternion and its representation of rigid body
motion in 3D space. Section State Estimation for MAVs describes inertial motion model in the
formulation of dual quaternion and the fusion framework based on EKF. Section Simulation and
Discussion presents simulation results and discussions. Finally section Conclusion concludes the
work.

2. Mathematical Preliminaries

This chapter presents the introduction to dual quaternion.
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2.1 Quaternion

The quaternion is generally defined as
q:qo+q1i+q2j+q3k- (1)

The quantity ¢, is the real or scalar part of the quaternion, and q,i+0,j+0,k is the imaginary
or vector part. The quaternion can therefore also be written in a four-dimensional column matrix

q=[q0 g Q qs]T- (2)

Quaternion can also be represented as q:[s,v] and q:[cosg,singv} where 6 is the

angle of rotation and v is the axis of rotation. Unit norm quaternion rotates a vector about
quaternion’s vector. It is given by gpg~' where p is the vector to be rotated and q is the unit

norm quaternion. For unit norm quaternion,q™' =q . Multiplication of quaternions results another
quaternion which is given by

d, ®q, =[s,.a][s,.b]
=[s,5, —a-b,s,b+S,a+axb].

€)

where ® is the quaternion multiplication, a-b is the dot product and axb is cross product of
vectors a and b. It is to be noted that quaternion multiplication is not commutative. Quaternion
multiplication can also be represented as a 4-element vector multiplied by a matrix.

d. =0, ®d, =R(0, )a,
Obo ~Y%1 U2 —Obs || Yao
Oor  Gho Obs Oz || Ya 4)
O —Obs  Gho Ob1 Qa2 .
Oos G2 —Uy Obo Oas

de =0, ®0, = L(q, ),
Qo ~Yar Qa2 —Uas || Go
Qai Gao  ~¥as Qa2 Ob1 (5)
G O G O |[ G |
Oaz  —Caz Qai Qa0 Obs

The Jacobian matrix of ¢, with respect to ¢, and ¢, respectively are:

oq,
. R(g, )- (6)
og,
F L(q, ). (7)

The properties of quaternion algebra are discussed more in detail in [6].
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2.2 Dual Number

Dual number is similar to a complex number and it is defined as,
Z=1+¢1°. (8)

where z is the real part, z° is the dual part and ¢ is the dual operator. These real and dual part
can be a real number, vector or matrix. The dual number framework is used in kinematics to
represent rigid body displacement in 3D space.

Dual number supports all algebraic properties and operations. The product of two dual number
results another dual number which is denoted as,

2,2, :zazb+g(zab°+aozb). 9)
Dual matrix can be defined as A=A +£A° where each element of the matrix is dual number.
The product of two dual matrices is given by,

AB=AB+s(AB° +A°’B’). (10)
2.3 Dual Quaternion

Dual quaternion  is a dual number with quaternion components. It is defined as,
q=0, +&0;. (11)

where g, and g are quaternions and real and dual component of dual quaternion respectively.

Each dual quaternion consists of eight scalar elements. Pair of quaternions are represented in single
dual quaternion variable. It provides a compact way of representation and rapid algebraic operations.
The addition of two dual quaternions can be represented as

q1+q2:(qr1+qr2)+g(q§1+q32)' (12)
and the multiplication is defined as,
G,d, = (0, ®0,,)+(d, ®ag, +0d5, ®0,, ). (13)

Dual quaternion supports all normal algebraic properties and operations [9]. The conjugate of a
dual quaternion is q" =q +&q; . The product of q and its conjugate § is one for unit dual

quaternion, GG = q=1. Unit dual quaternion is extensively used in kinematics to represent
transformation. The inverse of a dual quaternion is given by

q'=q"'-2(q'a5q"). (14)

The motion of rigid body in 3D space involves rotation followed by translation at every time
instant. The rigid body transformation of a body frame with another frame, e.g. inertial frame can be
represented compactly by a unit dual quaternion as follows,
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~ 0
Oib = Qip,r T €ip;

1

=0y, + gEtib @ Gy, (15)
1 b

=0y, + ‘C“Eqib,r S

The subscript identifies the rotation or translation of body frame b with respect to base frame
. . . . . i Tl T
I. 0y, is the unit quaternion represents rotation and t, =[O t:g] ,ti'f, =[0 tf’bT ] , ti s
translation vector in frame i and t in frame b.

The rotational and translational kinematic equations written in terms of dual quaternions can be
written compactly as[4]

=0 ® =2 @ @G, (16)
with @} the dual velocity of frame b with respect to frame i expressed in frame b and @,
in frame i. @, and @, are defined as

wp = wp + V. (17)
o =, +& (Viib — ) xth ) (18)

. T T ; T B T :
with a)it,’):[O mf’bT] , v:f):[O V:)bT} , a)i'b:[O m:;] , vi'bz[O V:;] ,0) and o) are
angular velocity of frame b with respect to frame i expressed in frame b and frame i
respectively . vi and vl are linear velocity of frame b with respect to frame expressed in

frame b.and frame i respectively.
3. State Estimation for MAVs

An EKF framework generally consists of prediction and update step. The prediction step is
responsible for propagating the state from one time step to next and new measurement information
from update step can correct the predicted state with more precision.

3.1 Inertial sensor model

Inertial Measurement Unit(IMU) comprises 3-axis accelerometer and 3-axis gyro providing
accelerations and angular velocities in body frame. The inertial measurements are assumed to
contain a bias b and a zero mean Gaussian white noise n. Thus, real accelerations and angular
velocities can be obtained by

o=0,-b, -n,. (19)
a=a —b,—n,. (20)

with @, as gyro measurements , a, as accelerometer measurements ,b, as gyro bias and b,

m

as accelerometer. The dynamics of a non-static bias b are modeled as a random process:

ib, =n, . 21)

()
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b,=n,.

with n, and n, aszero mean Gaussian white noise.
« a

We assume the bias b is static.
b, =0.

b, =0.

The accelerations and angular velocities can be expressed in terms of quaternion:

q(g) =qmm _qbw _qnw'
qa =qam _qba _qn *

a

" .
where qu[O v ] and v isa 3xl vector.

3.2 Inertial Motion Model

(22)

(23)

(24)

(25)
(26)

[1][2] proposed an IMU-vision data fusion framework based on EKF in detail. We simplify the
state definition in the reference. The states are stacked into a 20-element vector and consist of
position @, ,, velocity ¢, in inertial frame and rotation ¢, describing rotation of IMU body

frame with respect to inertial frame in terms of quaternion. The state vector can be written as a

vector:

)
X =[ U 55 G G- b0bY |

The time continuous differential equations can be obtained through (16):

O,y = . Oip.y ® (qmm O, ~ G, ) +

2
G =%qib,r ®(qmm =0y, U, )
b, =n,
b,=n,.

where q,=[0 0 0 —gO]T and g, islocal gravity.
Taking the expectations of the above derivatives, we obtain

A
A
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Gp.p = %qib,p ® (0, 0y, 0, )+ Uy

qib,p = %qib,p ® (qmm - qu )+ CA{ib,v'

(27)

(28)

(29)

(30)

€2))
(32)

(33)



A

aib,v = lqib,v ®(qmm - qbw )"‘%Qib,r ®(qam - Qba)

2 (34)
1 N
+qu ® qib,l‘.
- 1. N
Qip.r = Eqib,r ®(qmm -0y, ) (35)
b, =n, (36)
b, =n,. (37)

3.3 Error State Model

In the above state representation, the position, velocity and attitude of IMU frame are
represented in terms of dual quaternion. It is common that the error states are implemented in the
EKF framework. Therefore, we define the additive error state representation as dq=0—¢ with q

as the real quaternion and ¢ as the estimate quaternion. The error state can be expressed in a
vector:

i
5X =[ 5qf, .., . obL,, b | . (38)

as the difference of estimate to its quantity, e.g. o0, , =0, , — G, , - The differential equations for

the continuous time error state are

. 1 .
o0y, :§5qib,p ®(qu)m —0,, )+5qib,v

i ) (39)
_Eqib,p ®5qu _EQib,p ®5qnw‘
. 1 R 1,
Oy, == 00, ® (qu)m —0, ) ——=Up, ®0,,
2 2
1 1.
+§qg ® 5qib,r _Eqib,v ®5qbw
) 1 (40)
+E§qib,r ® (qam - qba ) _Eqib,r ® qna
l .
_E qib,r ® 5qba :
. 1 . 1,
OGy, = E5qib,r ® (qu)m —0p, ) _Eqib,r ® 50,
1 (41)
_Eqib,r ® qnm .
b, =n, . (42)
Sb, =n,. 43)
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These equations can be linearized via Taylor expansion and can be written compactly:

50X =F.6X+Gn. (44)

T
: : : N S S S S
with n being the noise vector n—[na,nba,nw,nbw] .

F, is
_lR(q =9 | 0 —1L(q ) 0 |
> on b, 4 4 ) 0.0 ). .4 433
_ 0, lR(qmm _wa) l[R(qam _qba)+ L(qg )} _lL(qib’V );,2:4 _lL(qib,f);,m (45
F, 2 2 2 2 (45)
0, 0, % R (qmm B qbw ) _% L (q't; );,2;4 Oss
L U U U U U i

F, can be discretized by:

F, = exp(F,At)

1 5, (46)
=1, +FcAt+5Fc At +---.
is
0 0 ! L(q 0
3 b Ty (qib,p)ﬁ:4 63
1
5 L(qib,r) 04 3 T, I—(élib,v):l4 06 3
G- T (47)
04 3 04x3 75 L(dm,r ):’2:4 05 3
03 03 03 I3
3 |3 03 03 B

with R() from (6) ,L(-) from (7) and the subscript :,2:4 identifying that the column vectors

spanning from index 2 to 4 are specified as a new matrix.
The discrete-time covariance matrix @, can be obtained

0, =[ F(:)6.0.G F(r) dr. (48)

. . . . . . - 2 2 2 2
with the @, being the continuous- G, time covariance matrix Q, = diag (cna,cnba,cnw,cn%).

Therefore, the prior covariance matrix P,, , associated with the prediction of the state is
provided:

P = F Pk—leT +Qy. (49)
where P, , denotes the posterior estimate of error covariance matrix at time K—1.
3.4 Measurement Model

A 6-DOF (Degree Of Freedom) pose can be obtained from camera or radar and used here to
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measurement system state. We define measurement Z as the difference between actual
measurements and the predicted values:

z = de {qj“}. (50)
Qip.r Gib,r

with superscript M identifying measurement data. It is assumed that the measurement position
and rotation quaternion is aligned in inertial frame.

The measurement model that maps the state vector into measurement can be derived by
linearization as:

Z, =H6X, +V,. (51)

with V, being zero mean Gaussian white noise at time K, the subscript k/k—1 identifying the
predicted state at time Kk and H as:

I, 0, 0, O
H-= {04 04 I4 04><6:|‘ (52)
4 4 4 4x6

The noise with the measurement model is zero Gaussian white noise and covariance matrix

R =diag (ogm ,62, ) representing the measurement uncertainty.

ib,p Gib.r

The Kalman gain is given by,
-1
K, =P, H'(HP, H +R) . (53)
The posterior estimate of error covariance matrix is

P, =(I—KkH)Pk/k71. (54)

4. Simulation And Discussions

A dual quaternion based fusion framework has been proposed and experimented with simulation
data. We generate 3-axis sinusoidal trajectory and attitude angle data using equations in reference

[1].
4.1 Simulation Without Noise

In the experiment, a dual quaternion based state propagation method has been compared with
quaternion based approach. The time-continuous differential equations (28)~(32) are discretized and
integrated using the generated gyro and accelerometer data without adding any noise. Fig. 1 and Fig.
2 Velocity error using IMU simulated data without adding noise show the performance of dual
quaternion based inertial dynamics method over quaternion based method. The position and
velocity error in altitude direction through single step integral of set of quaternion based dynamics
equations can have a divergence rate far beyond the proposed method and in other two directions
the performance of two methods is similar although the proposed method is inferior to the
quaternion based approach. It can be concluded that dual quaternion based method captures the
coupling between rotation and translation more accurately.
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Fig. 1 Position error using IMU simulated data without adding noise
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Fig. 2 Velocity error using IMU simulated data without adding noise

4.2 Simulation With Noise

The Gaussian noise added to original gyro and accelerometer simulated data can corrupt the
precision of the integral of inertial differential equations quickly. Therefore, EKF framework is
implemented to correct the estimated state.

The position is initialized at [0 10 O]T , velocity at [10 0 10]T and attitude angle at
[O 0 O]T . The gyro noise covariance is set with the value of 0.01rad’ /s® , accelerometer noise

covariance 0.25m’/s*, the measurement position covariance Im’ and the measurement attitude

angle covariance 9deg’.
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Fig. 3 Position estimation using fusion framework

Fig. 3 shows that the performance of proposed fusion framework in position estimate and the
error converges to a steady state quickly. According to Fig. 4 Attitude estimation using fusion
framework, the difference between real attitude angle and estimated value fall in the interval
between -0.05 and 0.05. Violent movements give rise to error peak. Hence, dual quaternion can be
implemented in EKF framework.
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Fig. 4 Attitude estimation using fusion framework

5. Conclusions

A dual quaternion based fusion algorithm for estimating motion states of MAVs is proposed in
this paper. The experiments have been performed with simulated data. Dual quaternion based
inertial differential dynamics can capture coupling between translation and rotation more accurately
compared to quaternion based method. It improves the precision of estimated results especially in
the velocity and position estimation in altitude direction. In the fusion framework, the dual
quaternion can be successfully implemented in EKF procedure. In future work, multiplicative error

states based on dual quaternion will be explored to improve the performance and effectiveness of
algorithm.
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