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Abstract: This paper introduces family load monitoring based on auxiliary particle filter 
algorithm. It mainly uses a set of random samples with relevant weights to estimate the 
posterior probability density )|( t

t Yxp . First of all, the model of household electrical 

appliances is established in this paper, then using the particle filter algorithm to estimate 
the state. It mainly consists of two parts: including Bayesian estimation and auxiliary 
particle filter-based load monitoring. Finally, the data collected by the sensor is simulated 
on the MATLAB platform, and the simulation results are obtained by using the 
evolutionary auxiliary particle filter algorithm. 

1. Introduction

Non-intrusive load monitoring (NILM) was proposed by Hart in the 1980s [1]. Which
decomposes the total load information into electrical equipment information, and then obtains the 
energy consumption situation and the electricity consumption law of the users. These electricity 
information has a high application value. It can provide benefits for Power Grid Corp, users and so 
on [2]. The advantage of the method is that the monitoring data is accurate and reliable. The 
disadvantage is that the practical operability is poor, the implementation cost is high and the user 
acceptance is low [1,3]. 

Compared with the intrusion load monitoring, NILM' s economic investment is small [3,9]. In 
recent years, with the rapid development of smart home and smart grid, NILM research boom in the 
world once again rise. However, the research on non-intrusive load monitoring and dis-aggregation 
(NILMD) is not enough in China. The research on non-intrusive load monitoring and 
decomposition algorithm is less. Therefore, the particle filter algorithm has gradually become a hot 
spot in the field of science. 

In recent years, many new methods of nonlinear filtering have been proposed in signal 
transmission and compression, financial data analysis, image processing, load monitoring and 
decomposition. All of these algorithms are based on the sequential importance sampling (SIS) filter 
of Bayesian sampling estimation. However, the above studies have not been able to solve the 
problem of particle number scarcity and computational constraints, so it has not attracted people's 
attention. Until 1993, Gordon [4] proposed a new SIS-based Bootstrap nonlinear filtering method, 
which laid the foundation of particle filter algorithm. The key idea of particle filter algorithm is to 
use a set of random samples with weights, and estimate the posterior probability density based on 
these samples. When the number of samples is very large, the probability estimation will be equal to 
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the posterior probability density. This method is an unsupervised classification method which is 
suitable for nonlinear and non Gauss interference problems. 

2. Household Appliances Model 

The load of a household is characterized by the power distribution of each household appliance 
in a household. Therefore, the sum of each appliance power distribution is the total power load, 
where each appliance model is modeled by HMM [10]. HMM is a hidden Markov model. It 
describes the state is hidden, a hidden Markov model by a probability distribution function. In detail, 

an HMM model has n hidden states, },...,,,{ 321 nsssss  , As time goes on, the system is 

transferred from one state to another.Setting: 1tx represents the state of time t+1 and the electrical 

power consumption of time t+1. The state probability of the system at time t+1 depends on the state 
of times 1, 2, ..., t, the probability is: 

......),|( 11 ktitjt SxSxSxP                                                    (1) 

If the state of the system at time t+1 is only related to its state at time t, the system constitutes a 
discrete first-order Markov chain: 

)|(),|( 1,......11 itjtktitjt SxSxPSxSxSxP                                    (2) 

If you only consider independent random process at time t + 1, then the probability can be: 

njiaSxSxP ijitjt  ,1,)|( 1                                             (3) 

Among them, the state transition probability must be satisfied. As shown in Eq.4: 
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We get the state transition matrix A , it represents the transition from the A state to the 
B state.  As shown in Eq.5: 

},1,{ njiaA ij 
         

                                              (5) 

It is also necessary to define an emission matrix B for HMM. In the Household and appliance 
model, the emission matrix B represents a possible power value for each state of an appliance. 

Initial probability: 

)( 1 iSxp                                                                  (6) 

It must also be defined for the HMM. 

3. State Estimation 

3.1 Bayesian Estimation.  

Various appliances and their environment consisting of system, according to the initial state 
probability distribution: )( 0xp and observed data: }.,,1,0|{ ttyY t

t   Estimate the current state 

of the system .tx  From a statistical point of view. The estimation of tx  is a Bayesian filtering 

problem, it can be achieved by estimating the posterior density distribution ).|( t
t Yp x  
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According to the Markov hypothesis and the Bayes rule, )|( t
t Yp x can be solved by the following 

two steps: 
1) Prediction stage:The model is used to predict the state of the system at the next moment, That 
is,the system prior probability density )|( 1t

t Yp x is calculated by the Eq.7: 

1
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                                      (7)   

among them ),|( 11  tttp uxx is the state transitive density of the system. 
2) Update stage:The observing model is used to update the state of the system by observing 
information, That is, the posterior density )|( t

t Yp x of the system is calculated by Eq.8: 
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Where )|( ttyp x is the observed model of the system(observed density). )|( 1t
t Yyp is a constant. 

According to the Markov assumption, under the premise that the current state is known, past 
measurements and current measurements are independent of each other. 

Although the above two steps give an effective recursive strategy for the load decomposition 
problem, however, in order to obtain the analytical solution of the posterior density )|( t

t Yp x of the 

system. The integral in Eq.7 must be calculated. This is difficult to achieve in a highly nonlinear 
load-shedding problem. In this case, an approximate method, such as a particle filter algorithm, can 
be used to solve the problem [11]. 

3.2 The Particle Filter.  

As shown in the previous section, home load monitoring is a Bayesian filtering problem, which 
amounts to estimating the state of the load at current time-step t, given knowledge about the initial 
state and all measurements tyy 1 up to the current time. When the transition and the observation 
model are nonlinear and/or non-Gaussian, this problem cannot be analytically solved. While particle 
filter provides an efficient means to tackle this problem. 

3.2.1 The Generic Particle Filter.  

Particle filter is an attractive simulation-based approach to the problem of computing intractable 
posterior distributions in Bayesian filtering. The idea is to approximate the continuous posterior 
density )/( tt yxp in each time step t by a random sample of i=1, , I particles┄ i

tx with corresponding 

probability masses, or weights i
t . The posterior is then given by the empirical estimate: 

)()/(
1

i
tt

I

i

i
ttt xxyxp 



                                                           (9) 

Where )( i
tt xx  is a delta function centered on the particle i

tx . Using Eq.9, the integration for 
computing the prior in Eq.8 is now replaced by the much easier summation: 
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While, since all integrals are replaced by sums and the continuous densities by discrete ones, the 
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require normalization step of the filtered posterior: 
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Is trivial, namely, a normalization of the discrete masses to unit sum. 
Assuming a set of particles that approximate the posterior density )/( tt yxp at time t sufficiently 

good, the problem is how to sample a set of particles from the new posterior )/( 11  tt yxp in Eq.11. 
Efficiently sampling from the posterior is the central theme of most methods in particle filters 
literature [7]. The frequently used sampling method is the Sampling/Importance Resampling (SIR) 
[5,8]. However, the SIR particle filter requires very many particles for convergence when the 
likelihood function )/( xyP is too peaked or is situated in one of the prior’s tails [6]. As a result, the 
posterior cannot be represented with reasonable accuracy. 

3.2.2 The Auxiliary Particle Filter.  

An elegant solution to the problem of optimal sampling from the posterior has been given by Pitt 
and Shephard [6] under the name‘auxiliary particle filter’. Their algorithm comes down to the 
following; in order to sample from the posterior )/( 11  tt yxp in Eq.11, just insert the likelihood inside 
the prior in Eq.10. 
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And treat the products )/( 11  tt
i
t xyp as the component probabilities in order to sample from the 

respective )/( 1
i
tt xxp  . Because the likelihood )/( 11  tt xyp in the above product involves the unobserved 

state vector 1tx , an approximation of Eq.10 has been suggested in [8] as: 
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where i
t 1 is any likely value associated with the i-th component transition density )/( 1

i
tt xxp  , for 

example its mean.After a set of particles j
tx 1 have been sampled from the transition density )/( 1

i
tt xxp 

with probability )/( 11
i
tt

i
t yp   , Ij ,,1 ,their weights are set proportional to: 
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where ji
t 1 is the associated likely value of the component )/( 1

ji
tt xxp  in Eq.13 from which the 

particle j was sampled. 
The auxiliary particle filter can be regarded as a one-step look-ahead procedure, where a particle

i
tx is propagated to i

t in the next time step in order to assist the sampling from the posterior. The 
resulting method is particularly efficient,since it requires only the ability to sample from the 
transition model and evaluate the likelihood function )/( tt xyp . This makes it very attractive 
compared to alternative methods that require specialized data structures for sampling from the 
posterior. However, in the problem of family load monitoring, the auxiliary particle filter will also 
need a large number of particles to represent the PDF and suffer from the sample impoverishment 
problem to some degree. 
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4. Experimental Process and Analysis 

We can use the HMM model to synthesize the power load of the family one day, and the results 
are shown below Fig.1. 

     

Fig.1.Household power load by synthetic data generation 

In this paper, we study the typical household appliances as the research object, the object of this 
study are: air conditioning, electric light, electric fan, computer, electric kettle. 

Using particle filter algorithm in the MATLAB simulation,through the voltage sensor and current 
sensor to detect the voltage and current sampling data, the electric light and electric kettle of the 
transient waveform and the five kinds of electrical appliances to open and close the results of the 
event. 

         

Fig.2.The current and voltage of electric light in MATLAB drawing 

The Fig.2 above is the current map, the horizontal coordinate is the data point sequence, the 
vertical coordinate is the current (A), the picture below is the voltage diagram, the horizontal 
coordinate is the data point sequence, the vertical coordinate is the voltage (V). 
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Fig.3.The current and voltage of electric kettle in MATLAB drawing 

The Fig.3 above is the current map, the horizontal coordinate is the data point sequence, the 
vertical coordinate is the current (A), the picture below is the voltage diagram, the horizontal 
coordinate is the data point sequence, the vertical coordinate is the voltage (V). 

The following Table1 is the result of the opening and closing events of the five kinds of electrical 
appliances. 

Table1.the result of the opening and closing events of the five kinds of electrical appliances 

Electrical 
appliances category 

Opening 
times 

Off times 
probability 

100pN  1000pN  

computer 50 50 0.9770 0.9846 
Electric light 50 50 0.9807 0.9898 
Electric fan 

Air conditioning 
50 
50 

50 
50 

0.9744 0.9901 
0.9831 0.9976 

Electric kettle 50 50 0.9876 0.9912 
                                                                                                       

During the experiment, we also found that the efficiency of particle filter is mainly determined 
by the number of particles used.With the increase of the number of particles, efficiency is 
higher.But in this paper,the particle filter algorithm is not improved,which is the need to improve 
this article. 

5. Summary  

This paper mainly introduces the family load monitoring based on auxiliary particle filter 
algorithm, the process of state estimation using auxiliary particle filter algorithm is introduced in 
detail. And through this algorithm, the household electric load of one day was synthesized. And 
using MATLAB simulation, obtained five kinds of electrical transient waveforms, more accurately 
determine the electrical switch state. It illustrates the nonlinear state estimation method, which can 
be approximated by particle filtering, the algorithm is suitable for household load monitoring. And 
it is found that the efficiency of particle filter is mainly determined by the number of particles. With 
the increase of the number of particles,efficiency is higher. But in this paper, the auxiliary particle 
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filter algorithm is not improved, which is the need to improve this article. 
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