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Abstract: As pedestrians usually appear up-right in image or video data, we therefore 
employ a statistical model of the up-right human body where the head, the upper body, and 
the lower body are treated as three distinct components. As we incorporate different kinds 
of low-level measurements, the resulting multi-modal & multi-channel Haar-like features 
represent characteristic differences between parts of the human body yet are robust against 
variations in clothing or environmental settings. Then we use a Switchable Deep 
Network(SDN) for pedestrian detection. The SDN automatically learns features of 
different body parts. Experimental results on many pedestrian datasets show that the 
proposed algorithm significantly improves the detection rates at 0.1FPPI compared with 
the state-of-the-art domain adaptation methods and that it is robust and accurate against 
cluttered dynamical background, occlusion and the object deformation.  

1. Introduction

Pedestrian detection is a challenging task of great interest in computer vision. Pedestrian
detection is an important topic in computer vision [1]. Significant progress has been achieved in 
recent years [2]. But this problem is particularly challenging because pedestrian images undergo 
large variations of visual appearance due to the changes of poses, viewpoints, clothing, lighting, and 
resolutions. Background clutters in a detection window also confuse the detectors.  

Many pedestrian detectors have been developed to address these challenges. They extract 
manually designed features, such as HOG[3] and Haar-like descriptors [4] or their combinations [5], 
from images, and then employ classifiers such as boosting [6], SVM [3], and structure SVM [7] to 
decide whether a detection window should be classified as a pedestrian. In order to handle more 
complex and larger variations, a mixture of templates is learned for each body part [8]. Such 
templates (e.g., poselets [8]) are learned through clustering pose annotations and region appearance. 

Over the last decade, the question of how to detect pedestrians in images has been thoroughly 
investigated [9]. A noticeable trend in this domain is that researchers increasingly rely on huge 
feature pools and high dimensional feature vectors since it is commonly believed that more features 
integrate more information and thus lead to better performances. As a consequence, many recent 
approaches rely on the availability of powerful computers and GPU computation in order to be 
capable of real-time detection. Also, aspects due to the peculiar geometry of high dimensional 
spaces, e.g. concentration of measure and neighborliness, appear to be disregarded[10].  
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2. The algorithm flow 

In this paper, we propose more compact features which simultaneously ensure effectiveness and 
efficiency. In particular, we argue that by incorporating prior information as to the appearance of 
the up-right human body, one can design reasonable features for pedestrian detection. In fact, from 
the point of view of visual perception, pedestrians form a class of high intra-class similarity. This is 
because strong regularities of up-right body shapes limit how pedestrians may appear in image data. 
In particular the head-shoulder area of the human body shows a geometry seldom found among 
other natural objects. Based on a careful exploration of these characteristics, we design new features 
that enable efficient, state-of-the-art pedestrian detection. 

Our approach is motivated by prior work on detecting objects of rather low intra-class variability. 
In particular, HOG and cascaded Haar-like features have become the de-facto methods of choice in 
this area. Yet, we note that corresponding features are either determined by means of exhaustive 
searches over all possible variations or by means of less exhaustive random sampling. In this paper, 
we propose a method that marks a middle ground; we design compact, discriminative Haar-like 
features selected from a particular template pool that reflects prior information about the pedestrian 
up-right body shape. Extensive experiments indicate that these features are highly characteristic and 
therefore enable very robust detection. 

In recent years, deep learning has been applied to pedestrian detection and achieved promising 
results.Instead of using handcrafted features, it can automatically learn features in an unsupervised 
or supervised fashion, such as restricted Boltzmann machine(RBM), and discriminative RBM. They 
are often stacked into multiple layers so as to map the raw data into gradually higher-level 
representations. Then, the entire network is fine-tuned with label information and the top layer 
output is often adopted as features to train classifiers. However, the hierarchical representations 
learned by deep models do not have semantic meanings as in previous hierarchical deformable 
part-based models. Ouyang and Wang extend DPM to a deep model by learning feature 
representations and jointly optimizing the key components of DPM. However, they did not 
explicitly model mixture of templates for each body parts as in and did not depress the influence of 
background clutters. 

We propose a novel Switchable Deep Network (SDN) for pedestrian detection. The SDN 
automatically learns hierarchical feature representations that correspond to body parts and the whole 
body. The key contribution of the model is that it introduces a new Switchable Restricted 
Boltzmann Machine (SRBM) to explicitly model the complex mixture of visual appearance at 
multiple levels. SRBM is used to build switchable layers added into the hierarchy of the SDN. At 
each feature level, SRBM estimates saliency maps (indicating a pixel is on the background or a 
pedestrian) for each test sample. For instance, in the root layer, the saliency map separates 
background clutter from discriminative regions for pedestrian detection. In a part layer, the saliency 
map also helps to localize each part in the same way. In addition, our deep model learns a mixture 
of templates for each part to represent it in different views and poses. SRBM can infer the most 
appropriate template for each part or the whole body. A new generative algorithm is devised to 
effectively pre-train the SDN and then fine-tune it with back-propagation. 

3. Informed Haar-like features 

In the following, traditional Haar-like features will be referred to as binary modalities as they 
only carry two possible weights (+1 and −1) for different rectangles. However, this binary modality 
is ill suited to represent cusps or corner-like structures of the human silhouette. That is to say, that it 
hardly adapts to the description of the content of bounding boxes that contain three different logical 
components such as, head, upper body, and background. Yet, for efficient subsequent classification 

8



we are interested in computing the difference between parts w.r.t. two of them at a time.  
To integrate color and gradient information, we build a multi-channel descriptor for each cell. 

We consider a total of 10 different channels as it is done in the detector: 3 channels for LUV colors, 
1 channel for gradient magnitude information, and 6 channels for histograms of oriented gradients. 
Assume we are given a template t = (x, y, (w, h), W). We first count how often the weights +1 and 
−1 appear and denote these counts as nadd and nsub. There are thus nadd additive cells and nsub 
subtractive cells and we normalize each cells weight by the total number of corresponding cells 
covered by a rectangle. This results in an average weight matrix: 

Wavg =sgn(W)/nadd+sgn(−W)/nsub.                                                (1) 

The feature value of any template t for any channel k,e.g. color or gradient information, can then 
be computed as a weighted sum: 
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where, σ(i, j, k) denotes the sum of values in cell(i, j)along channel k. 

4. Switchable Deep Network (SDN) 

4.1 Switchable Restricted Boltzmann Machine(SRBM) 

We employ both the input data and the labels as observed variables other than only using the 
data as in RBM, because supervised information can improve classification performance. The 
energy function is formulated as: 
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In which K indicates the number of components in the mixture and ｝｛ dUcbW ,,,, , where U 
is a fully-connect weight matrix to transform the features to labels and d is the bias vector of the 
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4.2 SND 

We stack a convolutional layer, four switchable layers(that is, modeled with SRBM), and one 
logistic regression layer into the SDN for pedestrian detection. The convolutional layer learns to 
extract low- and mid-level features, the switchable layers model high-level mixture representations 
and salience maps of the entire body and different body parts (head-shoulder, upper-body, and 
lower-body), and the logistic regression layer predicts labels. This architecture is designed for 
pedestrian detection. More layers can be added to handle more complex object hierarchies. 

The input image data x0 have six channels, each of which is in the size of 108×36. The first three 
channels are obtained by resizing the bounding box centered on the pedestrian with three different 
scales and then extract the Y-channels of these three images in the YUV color spaces. The last three 
channels are the edge maps of the first three channels by using Sober edge detector. This is to 
encourage the SDN to learn features with multi-scales and boundary cues. 

The convolutional layer outputs 64 channels by learning 64 filters, each with a size of 9×9×6. 
This layer can be formulated as below: 
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where )tanh()(tanh abs  is the absolute values of the hyperbolic tangent function, * indicates 

convolution, and i = 1…6 and j = 1…64 are the indicates of the input and output channels, 
respectively. W1 and b1 are the filter matrixes and bias vector. The output x1 are then sub-sampled 
by a max pooling layer to obtain more compact representation. 

5. Experiments and results analysis 

In this paper the algorithm program runs in Pentium (R) CPU 987 dual core 1.5 
GHz, 64 Windows 7 operating system, 4G memory on the computer. Fig.1 is part pedestrian sample 
figure, and Fig.2 is the result of pedestrian detection. 

 

Fig.1 part pedestrian sample figure 

 

Fig. 2 Schematic diagram of  pedestrian detection results 

The average detection rate of the method of Haar+AdaBoost in the reference[4] is 96.72%, the 
method of HOG+Haar+AdaBoost is 97.80%, the method of HOG+IKSVM is 96.19%, the method 
of FBP-CNN is 97.52%, and the method of DLSSC is 98.34%. The results indicated that 
the average detection rate of the proposed algorithm in this paper is 99.03%.In these algorithms, the 
detection rate of this algorithm is better. Furthermore, we analysis the missing rate and false 
detection rate of these algorithms, and take 0.1 FPPI as the reference point. The result is shown in 
Fig. 3.  
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Fig. 3 Overall performance of different detectors 
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6. Conclusions

The experimental results show that, this method’s detection precision compared to the common
pedestrian detection algorithm, is obviously improved, at the same time, also improves the real-time 
performance, so that the overall performance of pedestrian detection system is greatly improved. In 
general, out method provides an excellent balance between high detection accuracy and time 
efficiency both at training and test time. 
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