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Abstract: Till now, a large variety of researchers have carried out lots of efforts on 
object-oriented and UML model metrics from different views. They put forward numerous of 
metrics and carried out some series of theoretical and experimental verifications on 
understandability, analyzability, maintainability, fault-proneness, change-proneness and 
reuse. However, there is no formal semantic specification for UML model metrics, which 
may lead to potential semantic inconsistency and ambiguity. To solve this problem, this 
paper provided formalization for UML model metrics at the level of UML Meta models. This 
formalization can not only help people to understand the meaning of UML model metrics, 
but also can be used in the application domain of UML model metrics in a more rigorous 
way. 

1. Introduction

Till now, a large variety of researchers have carried out lots of efforts on object-oriented and UML
model metrics from different views. They put forward variety of metrics [1-4]. At the same time, 
researchers carried out some series of theoretical and experimental verifications[5,6], especially 
predicted external characteristics of software based on object-oriented and UML model metrics, such 
as understandability], analyzability, maintainability, fault-proneness, change-proneness and reuse. 

However, there is a small amount of formalization for object-oriented metrics [7-10], meanwhile 
there is little formalization for UML model metrics, which may lead to different interpretations, 
potential semantic inconsistency and ambiguity. To solve this problem, this paper provides a formal 
description for UML model metrics. This formalization can not only help people to understand the 
meaning of object-oriented metrics, but also can be used in the application domain of object-oriented 
metrics in a more rigorous way. 

2. Related Work

Software measurement is a long well known issue and has garnered much attention. Till now,
numerous metrics have been proposed from structural measurement, such as Halstead's metrics, 
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McCabe's cyclomatic number, to object-oriented measurement, such as CK suite [1], MOOD suite[2], 
QMOOD suite[3], and then to UML model measurement, such as Genero's suite[4]. 

Although lots of efforts have been developed on object-oriented and UML model metrics, there is 
a small amount of formalization for object-oriented metrics [7-10]. Ref.[7] formalized Depth of 
Inheritance Tree (abbreviated as DIT) and External Inheritance Factor (abbreviated as EIF) using the 
Object Constraint Language (abbreviated as OCL) based on UML Meta models. Similarly, Ref.[8] 
formalized  Operations Hiding Factor (abbreviated as OHF) and Attribute Inheritance Factor 
(abbreviated as AIF) using OCL based on UML meta models. Formal definitions of the MOOSE 
suite were given  in Ref.[9] using OCL. A suite of reusability metrics, such as Rate of Component 
Customizability (abbreviated as RCC), were formalized in Ref.[10] using OCL. By contrast with a 
small amount of formalization for object-oriented metrics, there is little formalization for UML 
model metrics. 

3. Formalizing UML Model Metrics 

On the basis of formalization of some core constructs of UML models, such as attributes, 
parameters, methods and classes done by Soon-Kyeong Kim and David Carrington[11], this paper 
formalized Genero's UML model suite using Z schemas [12] at the level of UML meta models.  For 
unity, the same symbols were used in this paper. Given a UML class diagram D, a class c,  
 Free set [Name] was used to represent names of classes, attributes and methods. 
 Free type Type was used to describe data type of attributes and parameters of methods. 
 Free type VisibilityKind was used to describe private, public, protected characteristics of 

attributes and methods. 
 Free set [Expression] was used to set initial values of attributes and parameters of 

methods. 
 Free type RelationshipKind was used to describe all kinds of relationships between 

classes.  
 Free type NavigabilityKind was used to describe the navigation direction of the 

relationship between classes. 
 

 

name: Name 

class: F Class 

kind: RelationshipKind 

multiplicity:P1N 

navigability: NavigabilityKind 

 

 

c1,c2: class  c1.name=c2.name c1= c2 

kind=dependence 

(c1,c2:class  

(c1c2there is a dependence relationship from c1 to c2 

(n:navigabilityn=one))) 
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kind= association  

(c1,c2:class c1c2 

there is a association relationship between c1 and c2 

multiplicity{0}(n:navigabilityn=none)) 

kind= association class  

(c1,c2,c3:class c1c2c3 

there is a association class c3 between c1 and c2 

multiplicity{0}(n:navigabilityn=none)) 

kind= aggregation   

(c1,c2:class c1c2 

there is a aggregation relationship from c1 to c2 

multiplicity{0}(n:navigabilityn=one)) 

kind= combination  

(c1,c2:class c1c2 

there is a combination relationship from c1 to c2 

multiplicity{{0,1},{1}}(n:navigabilityn=one)) 

kind= generalization 

(c1,c2:class c1c2 

there is a generalization relationship from c1 to c2 

{ c1,c2}
*id(Class)= (n:navigabilityn=one)) 

 

 

classdiagram: F UMLClassDiagram 

class: F Class 

NC: P1N 

 

 NC=#{c1|c1:class }  

 

 

classdiagram: F UMLClassDiagram 

class: F Class 

attribute: F Attribute 

 

NA: P1N 

 NA=#{a1| a1: attribute  c1:class}  

 

 

classdiagram: F UMLClassDiagram 

class: F Class 

method: F Method 

NM: P1N 

 

 NM=#{m1| m1:method  c1:class}  

NCMetric 

NAMetric 

NMMetric 
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classdiagram: F UMLClassDiagram 

NAssocVC: P1R 
 

 NAssocVC= NAssoc/NC  

 
 

 
classdiagram: F UMLClassDiagram 

NAggVC: P1R 
 

 NAggVC= NAgg/NC  

 
 

 classdiagram: F UMLClassDiagram  

NDepVC: P1R 

 NDepVC=NDep/NC  

 
 

 

classdiagram: F UMLClassDiagram 

class: F Class 

kind: RelationshipKind 

NGen: P1N 

 

 
NGen =#{<c1,c2>|c1,c2:class c1c2 

kind=generalization } 
 

 

4. Summary 

On the basis of formalization of some core constructs of UML models done by Soon-Kyeong Kim 
and David Carrington, this paper formalized Genero's UML model suite using Z schemas at the level 
of UML Meta models, which laid the foundation for the theoretical verification. In the next step, the 
nine properties of E. Weyuker and the theories of L. C. Briand will be verified to check whether they 
are good metrics or not and lay a theoretical foundation for their applications. 
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