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Abstract: In this paper we consider Bayesian analysis of the possible changes in 
hydrological time series by Markov chain Monte Carlo (MCMC) algorithm. We consider 
multiple change-points and various possible situations. The approach of Bayesian 
stochastic search selection is used for detecting and estimating the number and positions of 
possible change-point in a piecewise constant model. MCMC algorithm is used to estimate 
the posterior distributions of parameters. The result of the analysis is applied to the 
hydrological data sets of the major river net area of Shunde in China and the data set of 
Nile River. In order to further investigate the trends in each segment of the hydrological 
data sets, we consider the analysis of change-point regression model via MCMC algorithm. 

1. Introduction 

Following the published studies on climate changes, a number of hydrologists have used models, 
which describe certain types of changes, to represent hydrological time series. When natural 
surroundings changes abruptly, the hydrological time series may exhibit some trends or jumps. In 
this case, the statistical characteristics of the sequence may be different before and after some time 
points known as the change-points. Thus, change-point of hydrological time series reflects certain 
environmental changes. In most of the previous papers, a given type of change occurring with 
certainty is assumed, and focus has been put on the characterization of the change-point [1-2]. 
However, the problem of detecting multiple change-points is one of the most challenging problems, 
since both the number of the change-points and their locations are unknown. Besides the positions 
of the change-points, the trends of the sequence in different segments are of interest. Regression 
model can be used to deal with this problem. 

In this paper we consider the problem of analyzing the possible changes in hydrological time 
series by MCMC methods. In section 2, we adopt a piecewise constant multiple change-points 
Bayesian procedure to analyze the real data sets of the major river net area of Shunde in China and 
the data set of the Nile River from [3]. In order to further investigate the trends in different 
segments of the time series, we consider the analysis of change-points regression model by MCMC 
algorithm in section 3. Finally, in section 4, we present some conclusions. 
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2. Bayesian change-points analysis 

2.1 Piecewise constant change-points model 

Let{ , 1}ty t  be a real stochastic process which is constant between two change-points such that 

kt my  , for all kk t   11 ,                                                (1) 

where { , 1}km k  is a real sequence, { , 0}k k  is a set of change-points with the 
convention 0 0  ,{ , 1}t t  is assumed to be a sequence of independent Gaussian random variables 
such that 

),0~ 2
kt N  , for all kk t   11 .                                             (2) 

It is convenient for detecting change-points to introduce a random vector 1 1( ,..., )n    , where 
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The estimation of the change-points instants reduces to the estimation of the set 1 1( ,..., )n     

and { , 1}.km k   For a given configuration of  , 1
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In Bayesian inference, the choice of priors is important. We suppose   is a sequence of 
independent and identically distributed Bernoulli random variables with parameter  . Thus, the 
prior density of   is 

1( , ) (1 )K n K        .                                                    (5) 

On the other hand, for a given  , the prior of m is chosen as independent Gaussian distributions 
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Let 2( , , , )V     be the set of hyper-parameters which are known constants. Using standard 
distribution theory we obtain the conditional posterior distribution of m from equation (6), 
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   . It means that conditional on ( , )y  , 

the '
km s  remains independent and Gaussian. 

According to Bayes theorem, the joint posterior distribution of the parameter ( , )m  can 
expressed as 

       2, | ; | , ; | ; , ;f m y y m m V          .                               (8) 
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Consequently, the parameters '
km s  can be eliminated by integrating out km from equation (8). In 

a special case, 2 2 , 1,...,k k K   , The conditional posterior distribution of  can be obtained as 

      | ; ; exp | ;f y C y U y      .                                               (9) 

where ( ; )C y   is a normalizing constant, while  | ;U y S rK     is referred to as the energy 

function, in which
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The unknown parameter vector  can be estimated from the posterior distribution ( | ; )f r y  . One 
of the standard Bayesian estimates is the (marginal) maximum a posteriori (MAP) estimator 
obtained by maximizing the posterior distribution defined as argmax ( | ; ) argmax | ;f y y      U( )

 . 
Unfortunately, a closed-form expression of the MAP estimator of  cannot be obtained and MCMC 
algorithm could be used to obtain it. 

2.2 MCMC methods 

The main idea of this algorithm is to generate a Markov chain  { , 0}i i  using 
Metropolis-Hastings (M-H) algorithm with the invariant distribution ( | ; )f y  . The M-H algorithm 
is an iterative procedure. At iteration i, we carry out the following two steps: 

(1) An admissible new value  is drawn from a proposal kernel  ( | )iq   , which is irreducible. 

(2)  is accepted as the new state  1i    with the acceptance probability: 
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Since  ( | ; ) exp{ | ; }f y U y     , if the proposal kernel is symmetric such that    ( | ) ( | )i iq q     , 

then the acceptance step (2) reduces to: 
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where ln R  , R is drawn from the uniform distribution U(0,1). After a sufficiently long burn-in, 
the estimator of  is determined by computing the time average of the Markov chain output samples. 

The MAP estimator of  is determined by using a simulated annealing (SA) algorithm, which 
defines a non-homogeneous Markov chain. A decreasing temperature schedule should be introduced 
in the SA algorithm which can modify the acceptance probability. The proposal kernels are defined 
as in [4]: 

(a) The candidate  is drawn independently of the current state ( )i from an instrumental 

distribution defined by  ( | ) ( )iq q    . In this paper, q is chosen as a Bernoulli distribution with 
parameter . 

(b) A random permutation of {1,..., }n  is uniformly drawn. According to this permutation, each 
component is flipped from 0 to 1 or from 1 to 0. 

(c) An actual change-point is randomly selected and a neighborhood of this instant is defined. 
The change-point instant is moved in its neighborhood and accepted according to the acceptance 
probability. 

The acceptance probability is given by equation (10). The schedule for lowering the temperature 
is defined by 10.99k kT T  , where 0T is greater than a numerical constant depending on the energy 
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function ( | ; )U y  . This temperature decreases per cycle. The acceptance procedure is modified by 
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The implementation of a MCMC algorithm as described above assumes that the set of 
hyper-parameters  is known. We estimate  in a maximum likelihood framework by using the 
Stochastic Approximation version of the EM (SAEM) algorithm given by [5]. The algorithm 
describes as follows: (a) Choose an initial guess (0) and an initial configuration of change-points 
instants (0) . (b) At step j of the iteration: (1) perform one iteration of MCMC using the current value 

of ( 1)j   to simulate ( )j from ( 1)j  . (2) Compute the maximum likelihood estimate ( )( )jT  of  by 
maximizing the joint distribution of ( , )y  and update ( )j  

by ( ) ( 1) ( ) ( 1)( ( ) ),j j j j
j T r       where{ }j is the step size sequence which decreases to 0. 

2.3 Data analysis with hydrological data  

In this subsection, we apply the MCMC method to analyze fourteen data sets, in which thirteen 
time series are consisted of the annual maximum values in the major hydrological stations of 
Shunde in China. The other data set is the annual volume of the Nile River.  

The algorithm used in this paper draws vectors ( )i according to the distribution ( | ; )f y  with 
the MCMC algorithm proposed by Gibbs Sampling. For each vector ( )i , the estimated number of 

segment is
1( ) ( )

1
( ) 1

ni i
tt

K  


  . The MAP estimator of  is obtained after enough iteration (150000). 

Finally, m is drawn with the conditional posterior distribution ( | , ; )p m y 
.  

The posterior distributions of  , i.e. the probabilities{ ( 1| ; ),{1 1}tP y t n     , is displayed by 
Fig.1. The posterior distribution of K , i.e. the probabilities{ ( | ; ),1 }rP K k y k n   obtained by 

computing the histogram of the estimated numbers ( )( )iK   is displayed in Fig.2, while Fig.3 
depicts the time series of the hydrological data and the estimate of the vector m. The results are 
summarized in Table 1 and we summarize some conclusion as follows: 

(1) Only one change-point was detected for each series. 
(2) MCMC method detects one change-point at 1899 for the Nile river series, which agrees with 

previous studied by [6]. 
(3) Da Zhou, Fu Zhou He, Huan Ma Yong, Ma Kou, Rong Qi, San Hong Qi, Xiao Bu, Xin Yong 

have the same change time of 1993. Most of them are located in a developed area. It seems that 
these eight downstream sections are affected by human activities more obviously. 

(4) The change time of Ban Sha Wei,Gan Zhu, Nan Sha, San Shui and Wan Qing Sha are more 
earlier than those detected by [6] using a grey relational method. 

 

Fig. 1 The posterior distribution of  estimated with 150 000 iterations 
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Fig. 2 The posterior distribution of number K of segments estimated with 150 000 iterations 

 

Fig. 3 The time series of the data sets of Shunde and Nile River, along with the estimate m
  

3. Bayesian change-points regression analysis 

3.1 Change-points regression model 

In this section, we consider the segmented regression model with k change-points for fitting the 
observed data given by 

1, 1 ,1 ,t k k t k ky t for all t k K                                            (13) 

with the convention 0 0  , where { , 1}t t   is a sequence of random variables with normal 
distributions defined by equation (2). This model is also called segmented-line regression model. 

Let 1 1( ,..., )n    and K be defined as in section 2. Let 2 2 2
1( ,..., )K

    and 1{ ,..., }K
   , 

where ( , ) , 1,2,...,k k k k K     . Then, the likelihood function is given by: 
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Suppose the prior density ( ; )    of  is defined by eq. (5) and let , 1,2,...,k k   be 
independently distributed as the multivariate normal distribution 0( , )N   , where 0 and  are 
hyper-parameters. Thus for a given configuration  , the prior density of is defined by: 
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For a given sequence of segment points{ , 1}k k  , define 

( ) 2 ( ) ( ) 1 1 ( ) 2 ( ) ( ) 1
0,( )k k k k k k
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Let 2
0( , , )    denote the set of hyper-parameters. Then the conditional posterior distribution 

of is given by 2
0( | , ; ) ( | , ; ) ( | ; , ).p y r f y r r         Using standard distribution theory we obtain 

the following full conditional distributions： 

( ) ( ) ( )| , ; ~ ( , ), 1,..., .k k k
k y r N B b B k K                                          (17) 

The marginal posterior distribution of  is 
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In the special case where 2 2 , 1,...,k k K   , the marginal posterior distribution (18) reduces to 
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The estimation of  could be obtained by the MCMC method discussed in section 2. For a given 
configuration  , the estimation of regression parameters 1( ,..., )K

   can be obtained from the 

above standard distributions. 

3.2 The analysis of hydrological data 

In this subsection, we use the change-points regression model via MCMC method to analyze the 
data sets of the annual maximum values in the data set as in section 2. In the MCMC procedure, the 
hyper-parameter 0 is chosen as the least squares estimator from the regression model y t     , 
while 2

k is chosen as the sample variance of the observations { ,1 }ty t n  for 1k  . The 

hyper-parametric matrix  is chosen as an identity matrix 2 (1,1)I diag . 
The sample-based parameter estimates and the posterior probabilities of the fitted models are 

presented in Table 1. The change-point instant with maximum posterior probability is the same as 
detected in section 2 for each data set, but the maximum posterior probability may be different from 
that under the piecewise constant model in section 2. The trends in each segment of the fourteen 
hydrological data sets can be clearly seen from the estimates of the regression coefficients in Table 
1. 

4. Conclusions 

This paper studies the problem of change-point analysis of hydrological time series by Bayesian 
method. We consider various possible situations that may occur. The probabilistic model makes use 
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of a non-observed sequence  , and an M-H algorithm is used for estimating the posterior 
distribution of  . The advantage of this parameterization is that the dimension of the sequence  is 
fixed and the hyper-parameters of the model are estimated by the SAEM algorithm. 

The method of the paper is applied to analyze the hydrological data sets of the major river net 
area of Shunde in China and the data set of Nile River. These results agree with those obtained in 
the previous literatures. The MCMC method is used to estimate also the posterior distribution of the 
mean sequence. For further investigate the trends in each segment of the time series we use a 
segmented change-points regression model via MCMC approach. The change-point instant detected 
with maximum posterior probability is the same as that in the piecewise constant model for each 
data set. The trends in each segment can be clearly seen from the estimates of the segmented 
regression models. 

Table 1 Summary 

ID rivers K    
Piece wise constant 

model 
regression model 

 | ,P y   1 2( , )m m m     | ,P y   
1 1 1( , )  

   2 2 2( , )  
   

1 Ban Sha Wei 2 1958 0.802 2.0;2.4 0.5932 1.932;0.015 2.324;0.002 

2 Da Zhou 2 1993 0.926 2.5;3.2 0.497 2.309;0.006 2.053;0.025 

3 Fu Zhou He 2 1993 0.383 4.0;4.4 0.3146 4.043;-0.003 11.690;-0.156 

4 Gan Zhu 2 1965 0.289 4.6;4.9 0.1842 4.863;-0.156 5.230;-0.011 

5 HuanMa Yong 2 1993 0.508 3.1;3.2 0.5422 3.091;-0.004 5.078;-0.029 

6 Ma Kou 2 1993 0.293 7.4;7.7 0.2736 7.458;-0.005 17.970;-0.214 

7 Nan Sha 2 1961 0.563 1.7;1.9 0.2838 1.699;0.009 1.848;0.268 

8 Rong Qi 2 1993 0.476 2.6;3.1 0.6084 2.593;0.002 8.587;-0.120 

9 San Hong Qi 2 1993 0.308 3.0;3.6 0.5696 3.239;-0.011 6.047;-0.053 

10 San Shui 2 1965 0.171 7.4;7.5 0.2104 7.359;-0.064 8.301;-0.021 

11 Wan Qing Sha 2 1961 0.537 1.7;2.0 0.3514 1.753;-0.002 1.890;0.028 

12 Xiao Bu 2 1993 0.326 4.1;4.6 0.355 4.158;-0.004 10.863;0.129 

13 Xin Yong 2 1993 0.438 3.1;3.5 0.4602 3.151;-0.004 1.480;-0.153 

14 Nile 2 1899 0.665 935;913 0.8236 1080.0;1.117 805.0;0.696 
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