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Abstract: In order to improve the energy efficiency by reducing the amount of the data 
delivered in Wireless Sensor Networks(WSNs), a Compressive Sensing(CS) based data 
collection scheme considering the correlation in temporal-spatial domain is studied in this 
paper. Kronecker product is applied to construct the sparse basis in the joint domain. The 
simulation results show that due to the huge amount of sensor nodes, by exploiting the 
dependency in spatial domain, the data number can be reduced distinctly. The high 
recovery accurancy can still be achieved.   

1. Introduction

In most cases, communication cost is significant in WSNs. In order to improve the energy
efficiency, optimal algorithms[1,3] for the compression of sensed data, communication and sensing 
have been investigated. In this paper, a CS-based data collection scheme using WSN is designed 
and simulated to show the improvement of the engergy efficiency.  

2. Compressive Sensing

To describe CS theory[4,6] concisely, we describe a general linear system with

y Ax .   (1) 

where x  is the target signal in vector form of length n , the vector y  is the observations with 
length m , and A  is a matrix of size m  by n , m n . If the signal is sparse, Eq. (1) can be 
rewritten as 

y A c   or  y c . (2) 

where A  of size m n  and x c , c is a sparse representation when the transform 
matrix is adopted. In general,   is n l  with l  greater or equal to n . 

CS uses a basis pursuit (BP) approach to find the solution to Eq.(2). For measurements 
contaminated by noise, BP can be replaced by Basis Pursuit De-Noise (BPDN). The solution is 
given by 

1 2
min . .

l l
c s t y A c   . (3) 
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Because the 1L  norm is convex, it can then be calculated by modern linear programming 
optimization algorithms.  

3. Model of the Signal in CS-based WSN 

Suppose a WSN consists of N sensor nodes indexed by vector  1, 2, ,N N


  and a sink node. 

The samples collected over T  sensing periods are represented by a 3-D signal ensemble 

1 2T N N 

 . The  1 2, ,

th
t n n  sample in ensemble 


 denoted as 

1 2, ,t n nx refers to the sample in the 
tht  instant of node  1 2,n n . The equation of 1 2N N N   is here implied. Particularly, the 

following two expressions of the signal samples are also defined, i.e., 1 2(:, , )
T

n n 


  denotes the 

vector of T samples of node  1 2,n n  and 1 2
( ,:,:)

N N
t

 


  denotes the matrix of signal samples at 

time instant 1, 2, ,t T  . They are merged by the matrix of 

    1 2
1 2, , , , , ,

TT T N
Nx x x x x x         .                                     (4) 

where T
ix   is the thi  column of   representing the temporal signal of sensor i N , 

whereas t Nx   is the tht  row representing the spatial WSN signals at time instant t . 

Particularly, tx  is formed by stacking ( ,:,:)t


 into a vector, i.e., 

2 2 1 211 1 21 2, , , , , , ,
T

t
t t N t t N tN Nx x x x x x    

    
   .  

3.1 CS-Based Signal Model in Temporal Domain 

As assumed above, , 1, 2, ,T
ix i N   is compressible in temporal domain. According to 

CS theory, there is a basis T T
T

  such that  

, , 1, 2,i T T ix c i N   .                                                       (5) 

where ,
T

T ic   is the vector of ik -compressible trasform domain coefficients. By denoting 

,1 ,2 ,, ,T T T T NC c c c    , signal ensemble X  with temporal tranformation can be compactly written 

as T TX C , i.e., 

 1 ,1 ,2 ,, , , ,N T T T T Nx x c c c      .                                               (6) 

By (2), each sensor i N


 obtains im T  measurements via measurement matrix i  of size 

im T  as  

i i iy x .                                                                  (7)  

where im
iy   are the measurements. Then, each sensed data can be recovered according to (3) 

by solving  
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1 2

, , ,arg min . .T i T i i i T T il l
c c s t y c  


   .                                     (8)    

then, we can obtain the estimate as , , 1, 2,i T iTx c i N
 

   .  

Assume that at instant t  only tn  sensor nodes are in the active set     1 , ,t t t tA A A n   , 

t tA n , and accordingly the   ( 1, , )
th

t tA n n n   entries are the available measurements while all 

the others are zero. Thus, the measurements at instant t  can be expressed as 

   1 , , .t
t t t

T
nt

tA tA nz x x    

 
   The measurements transmitted in WSN are 

   1 1 1, , , ,N N Ny y x x   . The total number of the measurements is 
1

N

T i
i

M m


 . 

3.2 CS-Based Signal Model in Spatial Domain  

With the assumption of the compressibility of the data sensed in WSN, there are also such 

basises as 1 1
1

N N   and 2 2
2

N N   for vectors 1 2
( ,:,:)

N N
t

 


 that they can be expressed by 

( ,:,:) 1 , 2 1, 2,T
t S tC t T   


 .                                                 (9) 

where matrix ,S tC  consists of the associated coefficients in spatial domain.  

According to rules of linear algebra, we can express the vector tx  as  

     ( ,:,:) 1 , 2 2 1 , ,( )t T
t S t S t S S tx vec vec C vec C vec C           

 


.                   (10) 

where 2 1
N N

S       is the joint spasifying basis for 2-D spatial data,   denotes the 

Kronecker product and ,
N

S tC   is the vector of ik -compressible transform domain coefficients. 

By denoting ,1 ,2 ,, , ,S S S S TC c c c    , the spatial transformation of signal ensemble X  is 

compactly represented as T
S SX C , i.e., 

1
,1 ,2 ,, , , ,T

S S S S Tx x c c c        .                                             (11) 

Assume we acquire tn N  measurements of the sensor samples at each time instant 

1, 2, ,t T  , then also by (2) in CS theory above, we have  

t t
tz x .                                                                 (12)   

where tnz  are the measurements, tn N
t

  is the measurement matrix. According to (3), 

the recovery of each sensor signal tx  for time instant with spatial correlation can be calculated by 
solving  

1 2

, , ,arg min . .S t S t t t S S tl l
c c s t z c  


   .                                    (13)   

Then the estimate of tx


 can be further reconstructed as ,
t

S tSx c
 

 . The overall measurements 
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delivered in WSN are    1 1
1, , , ,T T

Tz z x x   . The number of these measurements is 

1

T

S t
t

M n


 . 

3.3 CS-Based Signal Model in Spatial-Temporal Domain  

In order to derive the sparsifying basis matrix of the joint correlation structure of  , we 
combine the basis matrixs above applying the rules of Kronecker product. Assume x  is the 
vector-reshaped expression of   which can be expressed as  

     2 1 T S T Jx vec X c c c            .                                 (14)   

where    1 , ,
TT T TN

Nx x x      , TN TN
J

  is just the equivalent sparsifying basis of 

the joint correlation structure of  , TNc   is the associated coefficients in transform domain.  
For the whole WSN, the measurements y  can be denoted as  

Jy x .                                                                  (15)   

where 1 , , i
T mT T

Ny y y      . As assumed above, each sensor i N


 have im T  

measurements on the basis of CS in temporal domain. Recall i i iy x  and im T
i  , we can 

deduce  1, , im NT

J Ndiag      . Specifically, if the measurement matrix i  of each 

sensor are identical, i.e., ' ,i i N  


, then (15) can be rewritten as  

 'Ny I x  .                                                            (16) 

where NI  is the identity matrix of size N N .  

Continue with the recovery of the signal ensemble for each sensor in WSN, the decoder in sink 
node can carry it out by solving the following joint optimization based on CS theory as  

1 2

arg min . . J Jl l
c c s t y c  


                                            (17) 

resulting in 1 , ,
TT T

NJx c x x
    
   

 
 . Then x



 can be further reshaped into the estimate of 

1, , T N
NX x x

  
    

  .  

Data aggregation will be possibly initiated in multi-hop WSN to linearly combine the nodes’ 
measurements. In this case, a measurement matrix tn Nall

t
  is alternatively selected for (12) 

involving all the sensors to participate in the measurement process. Each sensor i N


 transmits a 
CS data packet containing measurements of its own and those from neighbour sensors transmitted 
via it. The ordered set     1 , ,i i i iF F F J   collects the neighbour sensors which forward their 

data via sensor i  and iJ  is the number of the neighbour sensors. Applied the data aggregation 
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scheme here, the CS data packet can be denoted as     1, , ,
i i iti tF tF Jx x x , if i tJ n , or 

, ,

i

ti t i tj t j
j F

x x 


   
  

 , if i tJ n , where ,
tn

t i   is the thi  column of all
t  locally generated by 

sensor i . Under the CS-based data aggregation, the maximum number of measurements each 
sensor node has to transmit is , 1, ,tn t T  . Then the number of measurements transmitted in 

network is 
1

T

all t
t

M n NT


  . 

4. Simulation Results 

Assume that the WSN consists of 100 sensor nodes randomly deployed in a square area 
according to the uniform distribution. In 8T   time instants, each sensor collects and transmits 
samples to the sink node in the center of network. We use i.i.d. Gaussian Matrices for i  with 

20,im M i N   


 and , 1, ,tn J t T     respectively. Each sparse basis 1 2,   and T  was 

set to the inverse of DCT-matrix. All the involved optimation questions were solved using BPDN.  
The numbers of the measurements sensor nodes have to transimit in WSN are used to compare 

the communication costs in the case of different signal models, as shown in Fig.1. We define the 
communication cost ratio as  

1 1

N N
CS MHF

c i i
i i

R N N
 

     .                                                   (18) 

where CS
iN  and MHF

iN  denote the total numbers of measurements sensor note i N


 has to 

transmit for the CS-based method and for MHF, respectively. The recovery error is expressed as 
2

2

10 2
2

( ) 10logNMSE dB E x x E x
 

   
 

 and the results are plotted in Fig.2.  

 

Fig.1 Numbers of measurements transmitted in 
WSN 

 

Fig.2 the Normalized Mean Square Error of 
each case

5. Conclusions 

By expoiting the correlatlion in temporal and spatial domains, the number of the measurements 
is obviously decreased which means the energy consumed by data communication is consequently 
reduced. Due to the huge amount of the sensors result in high spatial correlation, the energy saving 
can be efficiently performed with good recovery quality. 

27



Acknowledgements 

This work was financially supported by the Natural Science Foundation of Gansu Province, 
China (1506RJZA081).    

References 

[1] G.Anastasi, M.Conti, M. Di Francesco and A. Passarella, “Energy conservation in wireless sensor networks: A 
survey”, Ad Hoc Netw, 2009, 7, pp537–568. 

[2] Markus Leinonen, Marian Codreanu and Markku Juntti, “Distributed Correlated Data Gathering in 
WirelessSensor Networks via Compressed Sensing”, 2013 Asilomar Conference on Signals, Systems and 
Computers, Nov. 2013, pp.418-422. 

[3] M.A. Razzaque, C. Bleakley and S. Dobson, “Compression in wireless sensor networks: A survey and 
comparative evaluation”, ACM Trans. Sens. Netw. 2013, Vol.10, 5,pp.1–44. 

[4] F. Li, T. J. Cornwell and F. de Hoog, “The application of compressive sampling to radio astronomy I: 
Deconvolution”, Astronomy and Astrophysics, June 2011, Vol.528, A31. 

[5] Emmanuel J. Candes, J. Romberg and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from 
highly incomplete frequency information”, IEEE Trans. Inform. Theory, Feb. 2006, vol. 52, no. 2, pp. 489–509. 

[6] D. L. Donoho, “Compressed sensing”, IEEE Trans. Inform. Theory, Apr. 2006, vol. 52, no. 4, pp. 1289–1306. 

28




