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Abstract:  The concept of dual hesitant fuzzy sets (DHFSs), which was first introduced as 
a new extension of fuzzy sets and hesitant fuzzy sets in 2012, is a useful tool to deal with 
the vagueness and ambiguity in many practical problems under hesitant fuzzy environment. 
Normally, we use the definition of distance to describe the relationship of two DHFSs. 
However, considering that the existing distance measures of DHFSs still have some major 
shortcomings, so in this paper, we firstly introduce a new concept –hesitance degree of 
each dual hesitant fuzzy element (DHFE) to these existing distance measures and then 
develop several novel distance measures in which both the values and the numbers of 
values of DHFE are taken into account. The properties of these new distance measures are 
discussed. Finally, we apply our proposed distance measures of DHFSs in pattern 
recognition making to illustrate their validity and applicability. 

1. Introduction

The concept of fuzzy set was introduced by Zadeh  in 1965 as an extension of the classical notion
of sets (see [1, 2]). In classical set theory, the membership of elements in a set is assessed in binary 
terms according to a bivalent condition –an element either belongs to or does not belong to the set, by 
contract, fuzzy sets theory permits the gradual assessment of the membership of elements in a set, this 
is described with the aid of a membership function valued in the real unit interval [0, 1]. Since its 
original definition, several extensions have been proposed for fuzzy sets, among them, we can 
underline, for their relevance in this paper, hesitant fuzzy sets (HFSs) and dual hesitance fuzzy sets 
(DHFSs). The HFSs define the membership of an element and the membership degree may be a set of 
possible values rather than inter-values [0, 1]. On the basis of HFSs, Zhu and Xu [3] introduced the 
definition of DHFSs which uses the membership hesitancy function and the non-membership 
hesitancy function to support a more exemplary and flexible access to assign values for each element 
in the domain, it is a very useful tool to deal with vagueness and ambiguity in the pattern recognition 
problems under hesitant fuzzy environment. 

Considering how to describe the relationship of two given fuzzy sets, researchers proposed the 
concept of distance measures which are used for estimating the degree of distance between two fuzzy 
sets. The most widely used distance measures are the Hamming distance, Euclidean distance and 
Hausdorff metric. Based on these researchers, Su and Xu have made some significant extensions for 
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these measures to deal with DHFSs. Now, these distance measures have been extensively applied in 
some fields such as decision making, pattern recognition, machine learning and market prediction 
and so on. 

However, in the process of practical application, we found that these existing distance measures of 
DHFSs still have some notable short comings, the most obvious is that they can only cover the 
divergence of the values but fail to consider the numbers of value of two given DHFSs. However, the 
main characteristic of DHFSs is that they can describe the hesitant situations flexibly, such a 
hesitation is depicted by a number of values of DHFSs being greater than just one. Hence, it’s very 
necessary to take into account both the difference of the values and that of the numbers when we 
study the difference between the DHFSs. In this paper, we referred to [4, 5], we propose some new 
distance measures for  DHFSs in this paper by taking into account the hesitance of the hesitant fuzzy 
sets and investigate their application in practical pattern recognition. 

Now, we firstly review the definition of DHFSs and the properties of their distance,  and then list 
several frequently-used distance measures of DHFSs. 

Definition 1.1.  Let X be a fixed set, then a dual hesitant fuzzy set (DHFSs) H on X is described as: 

H={  x, h(x), g(x)  | xX}.                                                                                                         (1) 

in which h(x) and g(x) are two sets of value in [0, 1] denoting  the possible membership degrees and 
non-membership degrees of  the element  xH to the set, respectively.  

Definition 1.2.  Let A and B be two DHFSs on  X={x1,  x2,…, xn}, then the distance between A 
and B denoted as d(A, B), which  satisfy  the following properties:  

(1) 0d(A, B)1; 
(2) d(A, B)=0 only if A=B; 
(3) d(A, B) =d(B, A). 
Definition 1.3.  Let elements in dE(x)=(hE(x), gE(x))  in decreasing order, and let (i)

E
  be the ith 

largest value in hE(x) and ( j)
E
  be the jth largest value in gE(x). Let  lh (dE(xi)) and lg (dE(xi))   be the 

number of values in hE(xi) and gE(xi), respectively. But in most case, lh (dE(xi))lg (dE(xi)). To operate 
correctly, we should extend the shorter one making both of  them have the length by adding different 
values.  

On the basis of aboving definitions, we can refer several existing distance measures for DHFSs 
now in [3]. 

Definition 1.4. we define a dual hesitant normalized Hamming distances at first : 
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in which 0  . i i ix x xl (# h ) (#g )   and #h and #g are the numbers of the elements in h and g 
respectively.  

Definition 1.5. If we take the weight of each element into account, the following weighted 

distance measures for DHFSs can be attained (  i 0,1   ,
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2. New distance measures for DHFSs with their application to pattern recognition 

In this section, we will propose a simple but convincing example to reveal the disadvantage of the 
above-mentioned distance measures at first. And then by introducing the definition of hesitance 
degree, we can get our modified distance measures. At last, we utilize the proposed distance measures 
to a practical pattern recognition example to prove their validity and superiority. 

Example 2.1. Let X={xi}, assume that there exist two patterns which are presented by DHFSs A 
and B, A={{0.69, 0.75}, {0.37, 0.76}}, {{0.21, 0.53, 0.74}, {0.96}}, {{0.22, 0.31, 0.60}, {0.61}}, 
{{0.31, 0.67}, {0.44, 0.69}},  B={{0.34, 0.35}}. Now, there is a sample to be recognized which is 
represented by another DHFS H= {{0.34, 0.53}, {0.21, 0.54}}, {{0.16, 0.31, 0.52}, {0.53}}, {{0.09, 
0.15, 0.39},  {0.42}}, {{0.23, 0.49}, {0.29, 0.51}}. 

Firstly, we should analyze this question by our above-mentioned knowledge, it is obviously that 
the difference of the membership values between A and H as well as that between B and H are almost 
the same, but the strucure of  H and that of A is almost totally uniform, which is quite different from 
that of B.what eles, the number of values of H is the same as that of A, but different from that of B to 
a great extent. As we stressed before, a hesitation is depicted by a number of values of DHFSs being 
greater than just one, so the number of values is equally important. So through discussion, we think it 
is easy to understand that H should belong to the pattern A. 

However, by applying  the existing distance measure equation (2), we can obtain d(A, H)=0.0584 
and d(B, H)=0.0366, so we get the result that H should belongs to the pattren B, it is obviously 
contrast our analysis. The error is because the existing  distance measures can only cover the 
divergence of the values but fail to consider the numbers of value of two given DHFSs. As we all 
known one small false step will make a great difference, so it’s very necessary to take into account 
both the difference of the values and that of  the numbers when we study the difference between the 
DHFSs.  

In the following, we propose some new distance measures between DHFSs by taking into account 
the hesitance extent of each DHFE, which can overcome the above-mentioned shortcoming. Before 
that, we first introduce a new concept as follows: 

Definition 2.1. Let A be a DHFSs on X={x1,  x2,…, xn}, fA(xi) and gA(xi) are the membership 
function and non-membership function of A. l(fA(xi)) and l(gA(xi)) are the length of fA(xi) and gA(xi), 
respectively.  
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We call A i(h (x ))  the hesitance degree of A ih (x )  , A(h )  the hesitance degree of  hA.The value of  

A(h )  reflects the degree of hesitance for a decisionmaker to determinne the membership for hA. In 
the following, we present some new distance measures which include the value of A(h )  . 

Definition 2.2. Let hA  and hB be a DHFS on X={x1, x2,..., xn}.Then the normalized Hamming 
distance with hesitance degree between hA(Xi) and hB(Xi) can be redefined as( 0  ): 
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Definition 2.3. A generalized dual hesitant weighted distance with hesitance degree between 
A ih (x )  and B ih (x )  is given as( 0  ): 
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Now we need to prove (6) satisfy the conditions of Definition 1.2. 
(1) It is obviously that 0 ≤d(A, B)≤1, because all the values of DHFSs are obtained in the interval

[0,1];  
(2) Necessity: if  1nd (A,B) 0, then  

A i B i| (h (x )) (h (x )) | 0,   ( j) ( j)
A i B i| (x ) (x ) | 0,      (k) (k)

A i B i| (x ) (x ) | 0.       

We can know A Bh (x) h (x) , so A=B. 
Sufficiency: if  A=B, then 

A i B i| (h (x )) (h (x )) | 0,    ( j) ( j)
A i B i| (x ) (x ) | 0,      (k) (k)

A i B i| (x ) (x ) | 0.      

We can  know 1nd (A,B) 0 . 
(3) Obviously, d1n(A, B) =d1n(B, A).
We can prove equation (7) satisfy the conditions of Definition 1.2. as well.
Now, we reconsider Example 3.1 by applying the above equation (6), we can obtain that d(A,

H)=0.0292 and d(B, H)=0.0704, so this result is accord with our analysis. 

3. The application in pattern recognition

To validate the proposed distance measures in practical application, we present another example in
this section: an available example quoting from [6]. 

The problem of building materials recognition is common in pattern recognition. Let each of 
metal materials be related to four attribute indices Gj(j= 1, 2, 3, 4), let the weight vector of the 
atttributes Gj(j= 1, 2, 3, 4) be T(0.40, 0.22, 0.18, 0.20)  , all data of other metal material be expressed 
in Table 1. In order to recognize which pattern a new metal material B={{0.8, 0.2}, {0.8, 0.2}, {0.5, 
0.2}, {0.7, 0.3}}. By applying the above-mentioned weighted equation, we can obtain table 2-4. 

Table 1.  DHFSs for building materials 

A  
G 

   G1 G2 G3 G4 

 A1 {{0.5,0.6}{0.3}} {{0.2}{0.7,0.8}} {{0.3,0.4}{0.5,0.6}} {{0.5,0.60.7}{0.3}} 
 A2 {{0.8}{0.2}} {{0.6,0.7,0.8}{0.2}} {{0.1,0.2}{0.3}} {{0.2}{0.6,0.7,0.8}} 
 A3 {{0.7,0.8}{0.2}} {{0.2,0.3,0.4{0.5}} {{0.4,0.5}{0.2}} {{0.2,0.4}{0.5,0.6}} 
 A4 {{0.3,0.4}{0.6}} {{0.4,0.5}{0.3,0.4}} {{0.3,0.4}{0.6}} {{0.4,0.5}{0.5}} 
 A5 {{0.7}{0.3}} {{0.4,0.5}{0.3,0.4}} {{0.3}{0.5,0.6,0.7}} {{0.5}{0.4,0.5}} 

Table 2.  Distances among Ai and B calculated by equation (3) 

 A   A1 A2 A3 A4 A5 Ranking 

 =1 0.1185 0.0680 0.0685 0.1500 0.0990 A4> A1> A5> A3> A2 

 =2 0.0876 0.0496 0.0487 0.1091 0.0723 A4> A1> A5> A2> A3 

 =4 0.0687 0.0433 0.0414 0.0948 0.0637 A4> A1> A5> A2> A3 

 =6 0.0895 0.0415 0.0394 0.0919 0.0617 A4> A1> A5> A2> A3 
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Table 3.  Hesitance degree of Ai and B 

A          G G1 G2 G3 G4 Hesitance degree of Ai and B 

 A1 0.2500 0.2500 0.5000 0.3334 0.3334 
 A2 0.5000 0.3334 0.2500 0.3334 0.3542 
 A3 0.2500 0.3334 0.2500 0.5000 0.3334 
 A4 0.2500 0.5000 0.2500 0.2500 0.3125 
 A5 0.5000 0.5000 0.3334 0.2500 0.3959 

Table 4.  Distances among Ai and B calculated by equation (7)  

 A   A1 A2 A3 A4 A5 Ranking 

0.1

0.9

 
 

 =1 0.4810 0.3535 0.3243 0.5255 0.4200 A4> A1> A5> A2> A3 

 =2 0.2288 0.1900 0.1586 0.1987 0.1795 A1> A4> A2> A5> A3 

 =4 0.1663 0.1389 0.1080 0.1248 0.1228 A1> A2> A4> A5> A3 

 =6 0.1530 0.1274 0.0970 0.1098 0.1146 A1> A2> A5> A4> A3 

0.3

0.7

 
 

 =1 0.4430 0.3535 0.3229 0.4765 0.4200 A4> A1> A5> A2> A3 

 =2 0.2015 0.1830 0.1480 0.1776 0.1813 A1> A2> A5> A4> A3 

 =4 0.1330 0.1147 0.0880 0.1008 0.1048 A1> A2> A5> A4> A3 

 =6 0.1120 0.1006 0.0763 0.0862 0.0913 A1> A2> A5> A4> A3 

0.5

0.5

 
 

 =1 0.4058 0.3675 0.3217 0.4275 0.4225 A1> A4> A5> A2> A3 

 =2 0.1742 0.1758 0.1374 0.1565 0.1831 A5> A1> A2> A4> A3 

 =4 0.0996 0.0905 0.0678 0.0768 0.0868 A1> A2> A5> A4> A3 

 =6 0.0864 0.0738 0.0555 0.0626 0.0681 A1> A2> A5> A4> A3 

0.7

0.3

 
 

 =1 0.3670 0.3745 0.3201 0.3785 0.4200 A5> A4> A2> A1> A3 

 =2 0.1469 0.1687 0.1267 0.1354 0.1849 A5> A2> A1> A4> A3 

 =4 0.0662 0.0575 0.0476 0.0528 0.0688 A5> A1> A2> A4> A3 

 =6 0.0531 0.0470 0.0347 0.0390 0.0449 A1> A2> A5> A4> A3 

0.9

0.1

 
 

 =1 0.3290 0.3815 0.3187 0.3295 0.4200 A5> A2> A1> A4> A3 

 =2 0.1196 0.1616 0.1061 0.1143 0.1867 A5> A2> A1> A4> A3 

 =4 0.0329 0.0421 0.0275 0.0288 0.0508 A5> A2> A1> A4> A3 

 =6 0.0198 0.0202 0.0140 0.0154 0.0216 A5> A2> A1> A4> A3 

It is clear in the table 2, when the values of   are different, the optimum metal material is different 
(A2 or A3), so the traditional equation only consider the membership values but cannot take into 
account the hesitance degree of each hesitant fuzzy element. In the table 3, it is obviously that the 
hesitance degree of A3 and B is relatively smaller than that of A2 and B. We also can obtain that no 
matter how much the value of is, the minimal distance is the distance among A3 and B in tables 
4.Based on the minimum distance principle, it is easy to get the conclusion that A3 is the optimum
metal material. 

4. Summary

This paper present a new definition of DHFSs based on the original definition by introducing the 
concept of hesitance degree and investigated their application. We also apply our proposed new 
distance measures of DHFSs in pattern recognition. Compared to the existing definitions, the 
proposed definition has a better distinction to some degree. We also look forward to make some 
further development about DHFSs. 
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