Education, Science, Technology, Innovation and Life
Open Access
Sign In

Liver fibrosis: latest advances in treatment

Download as PDF

DOI: 10.23977/medbm.2026.040101 | Downloads: 0 | Views: 34

Author(s)

Bingrui Xie 1, Mingxin Zhang 1

Affiliation(s)

1 Shaanxi University of Chinese Medicine, Xianyang, 712046, China

Corresponding Author

Mingxin Zhang

ABSTRACT

Liver fibrosis is a self-repair response of the liver, triggered by various chronic liver injuries, and can progress to cirrhosis and liver cancer. Globally, the prevalence of liver fibrosis is continuously increasing, posing a serious threat to public health. The pathophysiological process of liver fibrosis is very complex, involving interactions between multiple cells and cytokines, but the key lies in the excessive deposition of extracellular matrix (ECM) caused by the activation of hepatic stellate cells (HSCs). Currently, apart from liver transplantation, there are no targeted therapeutic methods. However, as understanding deepens continuously and the exploration of the pathophysiology of liver fibrosis has advanced, a series of anti-fibrotic therapies targeting different mechanisms have also made significant progress. Various treatment methods, including stem cells, nano-drug delivery systems (NDDS), natural products, traditional Chinese medicine formulas, and thyroid hormone receptor agonists, have shown significant anti-fibrotic effects by regulating key signaling pathways, inhibiting the stimulation of HSCs, promoting liver self-repair, and modulating immune responses. This review focuses on summarizing these anti-liver fibrosis methods, in-depth analysis of their mechanisms of action, and further discusses the challenges they face in clinical application.

KEYWORDS

Liver fibrosis; hepatic stellate cells (HSCs); stem cell; nanoparticle drug delivery systems (NDDS); natural products; Traditional Chinese medicine formulas; thyroid hormone receptor agonists

CITE THIS PAPER

Bingrui Xie, Mingxin Zhang, Liver fibrosis: latest advances in treatment. MEDS Basic Medicine (2026) Vol. 4: 1-13. DOI: http://dx.doi.org/10.23977/medbm.2026.040101.

REFERENCES

[1] Akkız H, Gieseler RK, Canbay A. Liver fibrosis: from basic science towards clinical progress, focusing on the central role of hepatic stellate cells. Int J Mol Sci 2024, 25(14). 
[2] Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature 2020, 587(7835):555-566. 
[3] Zamani M, Alizadeh-Tabari S, Ajmera V, Singh S, Murad MH, Loomba R. Global prevalence of advanced liver fibrosis and cirrhosis in the general population: a systematic review and meta-analysis. Clin Gas-troenterol Hepatol 2024. 
[4] De Smet V, Eysackers N, Merens V, Kazemzadeh DM, Halder G, Verhulst S, et al. Initiation of hepatic stellate cell activation extends into chronic liver disease. Cell Death Dis 2021, 12(12):1110. 
[5] Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells 2020, 9(4). 
[6] Gaul S, Leszczynska A, Alegre F, Kaufmann B, Johnson CD, Adams LA, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. J Hepatol 2021, 74(1):156-167. 
[7] Kiagiadaki F, Kampa M, Voumvouraki A, Castanas E, Kouroumalis E, Notas G. Activin-a causes hepatic stellate cell activation via the induction of tnfα and tgfβ in kupffer cells. Biochim Biophys Acta Mol Basis Dis 2018, 1864(3):891-899. 
[8] Ni XX, Ji PX, Chen YX, Li XY, Sheng L, Lian M, et al. Regulation of the macrophage-hepatic stellate cell interaction by targeting macrophage peroxisome proliferator-activated receptor gamma to prevent non-alcoholic steatohepatitis progression in mice. Liver Int 2022, 42(12):2696-2712. 
[9] Gao J, Zuo B, He Y, Liver sinusoidal endothelial cells as potential drivers of liver fibrosis (Review). Mol Med Rep 2024;29
[10] Qu J, Wang L, Li Y, Li X. Liver sinusoidal endothelial cell: an important yet often overlooked player in the liver fibrosis. Clin Mol Hepatol 2024, 30(3):303-325. 
[11] Zhang Y, Ren L, Tian Y, Guo X, Wei F, Zhang Y. Signaling pathways that activate hepatic stellate cells during liver fibrosis. Front Med (Lausanne) 2024, 11:1454980. 
[12] Tang Y, Wu P, Li L, Xu W, Jiang J. Mesenchymal stem cells and their small extracellular vesicles as crucial immunological efficacy for hepatic diseases. Front Immunol 2022, 13:880523. 
[13] Bai X, Su G, Zhai S. Recent advances in nanomedicine for the diagnosis and therapy of liver fibrosis. Nanomaterials (Basel) 2020, 10(10). 
[14] Liu P, Mao Y, Xie Y, Wei J, Yao J. Stem cells for treatment of liver fibrosis/cirrhosis: clinical progress and therapeutic potential. Stem Cell Res Ther 2022, 13(1):356. 
[15] Zhou J, Shi Y. Mesenchymal stem/stromal cells (mscs): origin, immune regulation, and clinical applications. Cell Mol Immunol 2023, 20(6):555-557. 
[16] Chen P, Yuan M, Yao L, Xiong Z, Liu P, Wang Z, et al. Human umbilical cord-derived mesenchymal stem cells ameliorate liver fibrosis by improving mitochondrial function via slc25a47-sirt3 signaling pathway. Biomed Pharmacother 2024, 171:116133. 
[17] Yao L, Hu X, Yuan M, Liu P, Zhang Q, Wang Z, et al. Human umbilical cord-derived mesenchymal stromal cells alleviate liver cirrhosis through the hippo/yap/id1 pathway and macrophage-dependent mechanism. Int Immunopharmacol 2023, 123:110456. 
[18] Jun JH, Park S, Kim JY, Lim JY, Park GT, Kim JH, et al. Combination therapy of placenta-derived mesenchymal stem cells with wkymvm promotes hepatic function in a rat model with hepatic disease via vascular remodeling. Cells 2022, 11(2). 
[19] Iwasawa T, Nojiri S, Tsuchiya A, Takeuchi S, Watanabe T, Ogawa M, et al. Combination therapy of juzentaihoto and mesenchymal stem cells attenuates liver damage and regresses fibrosis in mice. Regen Ther 2021, 18:231-241.
[20] Xu Y, Wang XS, Zhou XL, Lu WM, Tang XK, Jin Y, et al. Mesenchymal stem cell therapy for liver fibrosis need "partner": results based on a meta-analysis of preclinical studies. World J Gastroenterol 2024, 30(32): 3766-3782. 
[21] Xiang W, Yin G, Liu H, Wei J, Yu X, Xie Y, et al. Arctium lappa l. Polysaccharides enhanced the therapeutic effects of nasal ectomesenchymal stem cells against liver fibrosis by inhibiting the wnt/β-catenin pathway. Int J Biol Macromol 2024, 261(Pt 1):129670. 
[22] Ding F, Liu Y, Li J, Wei X, Zhao J, Liu X, et al. Tc14012 enhances the anti-fibrosis effects of uc-mscs on the liver by reducing collagen accumulation and ameliorating inflammation. Stem Cell Res Ther 2024, 15(1):44. 
[23] Xie Y, Yao J, Yan M, Lin Y, Wei J, Wang H, et al. Pretreatment of uc-mscs with ifn-α2 improves treatment of liver fibrosis by recruiting neutrophils. J Transl Med 2023, 21(1):832. 
[24] Liu Y, Zheng Y, Yang Y, Liu K, Wu J, Gao P, et al. Exosomes in liver fibrosis: the role of modulating hepatic stellate cells and immune cells, and prospects for clinical applications. Front Immunol 2023, 14:1133297. 
[25] Zhu L, Wang Q, Guo M, Fang H, Li T, Zhu Y, et al. Mesenchymal stem cell-derived exosomes in various chronic liver diseases: hype or hope? J Inflamm Res 2024, 17:171-189. 
[26] Cao Y, Yang H, Huang Y, Lu J, Du H, Wang B. Mesenchymal stem cell-derived exosomal mir-26a induces ferroptosis, suppresses hepatic stellate cell activation, and ameliorates liver fibrosis by modulating slc7a11. Open Med (Wars) 2024, 19(1):20240945. 
[27] Zhang Z, Shang J, Yang Q, Dai Z, Liang Y, Lai C, et al. Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting pi3k/akt/mtor pathway and remodeling choline metabolism. J Nanobiotechnology 2023, 21(1):29. 
[28] Ashour AA, El-Kamel AH, Mehanna RA, Mourad G, Heikal LA. Luteolin-loaded exosomes derived from bone marrow mesenchymal stem cells: a promising therapy for liver fibrosis. Drug Deliv 2022, 29(1):3270-3280. 
[29] Wang Y, Chen Y, Yang F, Yu X, Chu Y, Zhou J, et al. Mir-4465-modified mesenchymal stem cell-derived small extracellular vesicles inhibit liver fibrosis development via targeting loxl2 expression. J Zhejiang Univ Sci B 2024, 25(7):594-604. 
[30] Liu H, Huang H, Liu Y, Yang Y, Deng H, Wang X, et al. Adipose-derived mesenchymal stem cells inhibit hepatic stellate cells activation to alleviate liver fibrosis via hippo pathway. Stem Cell Res Ther 2024, 15(1): 378. 
[31] Yuan M, Yao L, Chen P, Wang Z, Liu P, Xiong Z, et al. Human umbilical cord mesenchymal stem cells inhibit liver fibrosis via the microrna-148a-5p/slit3 axis. Int Immunopharmacol 2023, 125(Pt A):111134. 
[32] Gan L, Zheng L, Yao L, Lei L, Huang Y, Zeng Z, et al. Exosomes from adipose-derived mesenchymal stem cells improve liver fibrosis by regulating the mir-20a-5p/tgfbr2 axis to affect the p38 mapk/nf-κb pathway. Cytokine 2023, 172:156386.
[33] Ma J, Li Y, Chen M, Wang W, Zhao Q, He B, et al. Hmscs-derived exosome circcdk13 inhibits liver fibrosis by regulating the expression of mfge8 through mir-17-5p/kat2b. Cell Biol Toxicol 2023, 39(2):1-22. 
[34] Feng Y, Li Y, Xu M, Meng H, Dai C, Yao Z, et al. Bone marrow mesenchymal stem cells inhibit liver fibrosis via the aabr07028795.2/rno-mir-667-5p axis. Stem Cell Res Ther 2022, 13(1):375. 
[35] Tan Y, Huang Y, Mei R, Mao F, Yang D, Liu J, et al. Hucmsc-derived exosomes delivered becn1 induces ferroptosis of hepatic stellate cells via regulating the xct/gpx4 axis. Cell Death Dis 2022, 13(4):319. 
[36] Yao Y, Xia Z, Cheng F, Jang Q, He J, Pan C, et al. Human placental mesenchymal stem cells ameliorate liver fibrosis in mice by upregulation of caveolin1 in hepatic stellate cells. Stem Cell Res Ther 2021, 12(1):294. 
[37] Chawla S, Choudhury S, Das A. Bioengineered msc (gfpcxcr2-mmp13) transplantation alleviates liver fibrosis by regulating mammalian target of rapamycin signaling. Antioxid Redox Signal 2024, 41(1-3):110-137.
[38] Kim SH, Kim JY, Park SY, Jeong WT, Kim JM, Bae SH, et al. Activation of the egfr-pi3k-cam pathway by prl-1-overexpressing placenta-derived mesenchymal stem cells ameliorates liver cirrhosis via er stress-dependent calcium. Stem Cell Res Ther 2021, 12(1):551. 
[39] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126(4):663-676. 
[40] Li H, Li J, Wang T, Sun K, Huang G, Cao Y, et al. Hepatobiliary organoids differentiated from hipscs relieve cholestasis-induced liver fibrosis in nonhuman primates. Int J Biol Sci 2024, 20(4):1160-1179. 
[41] Pouyanfard S, Meshgin N, Cruz LS, Diggle K, Hashemi H, Pham TV, et al. Human induced pluripotent stem cell-derived macrophages ameliorate liver fibrosis. Stem Cells 2021, 39(12):1701-1717. 
[42] Tadokoro T, Murata S, Kato M, Ueno Y, Tsuchida T, Okumura A, et al. Human ipsc-liver organoid transplantation reduces fibrosis through immunomodulation. Sci Transl Med 2024, 16(757):eadg0338. 
[43] Somnay K, Wadgaonkar P, Sridhar N, Roshni P, Rao N, Wadgaonkar R. Liver fibrosis leading to cirrhosis: basic mechanisms and clinical perspectives. Biomedicines 2024, 12(10). 
[44] Yan L, Han Y, Wang J, Liu J, Hong L, Fan D. Peripheral blood monocytes from patients with hbv related decompensated liver cirrhosis can differentiate into functional hepatocytes. Am J Hematol 2007,82(11):949-954. 
[45] Guo C, Guo G, Zhou X, Chen Y, Han Z, Yang C, et al. Long-term outcomes of autologous peripheral blood stem cell transplantation in patients with cirrhosis. Clin Gastroenterol Hepatol 2019, 17(6):1175-1182. 
[46] Sakai Y, Takamura M, Seki A, Sunagozaka H, Terashima T, Komura T, et al. Phase i clinical study of liver regenerative therapy for cirrhosis by intrahepatic arterial infusion of freshly isolated autologous adipose tissue-derived stromal/stem (regenerative) cell. Regen Ther 2017, 6:52-64. 
[47] Sakai Y, Fukunishi S, Takamura M, Kawaguchi K, Inoue O, Usui S, et al. Clinical trial of autologous adipose tissue-derived regenerative (stem) cells therapy for exploration of its safety and efficacy. Regen Ther 2021, 18:97-101.
[48] Zekri AR, Salama H, Medhat E, Musa S, Abdel-Haleem H, Ahmed OS, et al. The impact of repeated autologous infusion of haematopoietic stem cells in patients with liver insufficiency. Stem Cell Res Ther 2015, 6(1):118. 
[49] Sharma M, Pondugala PK, Jaggaihgari S, Mitnala S, Krishna VV, Jaishetwar G, et al. Safety assessment of autologous stem cell combination therapy in patients with decompensated liver cirrhosis: a pilot study. J Clin Exp Hepatol 2022, 12(1):80-88. 
[50] Liu J, Liu J, Mu W, Ma Q, Zhai X, Jin B, et al. Delivery strategy to enhance the therapeutic efficacy of liver fibrosis via nanoparticle drug delivery systems. Acs Nano 2024, 18(32):20861-20885. 
[51] Wang X, Zhang W, Zeng S, Wang L, Wang B. Collagenase type i and probucol-loaded nanoparticles penetrate the extracellular matrix to target hepatic stellate cells for liver fibrosis therapy. Acta Biomater 2024, 175:262-278. 
[52] Sun D, Du X, Cao X, Wu B, Li S, Zhao Y, et al. Neutrophil-based bionic delivery system breaks through the capillary barrier of liver sinusoidal endothelial cells and inhibits the activation of hepatic stellate cells. Mol Pharm 2024, 21(4):2043-2057. 
[53] Mohan AG, Calenic B, Ghiurau NA, Duncea-Borca RM, Constantinescu AE, Constantinescu I. The golgi apparatus: a voyage through time, structure, function and implication in neurodegenerative disorders. Cells 2023, 12(15). 
[54] Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022, 7(1):379. 
[55] Li Y, Zhang T, Zhang J, Liu Q, Jia Q, Chen W, et al. Dually fibronectin/cd44-mediated nanoparticles targeted disrupt the golgi apparatus and inhibit the hedgehog signaling in activated hepatic stellate cells to alleviate liver fibrosis. Biomaterials 2023, 301:122232. 
[56] Xuan J, Wang Z, Huang Y, Liu Y, Han Y, Li M, et al. Dna response element-based smart drug delivery systems for precise drug release. Biomater Sci 2024, 12(14):3550-3564. 
[57] Siapoush S, Mousazadeh H, Rezaei R, Hatami B, Mazhari S, Hashemi N, et al. Oral targeted delivery of imatinib by ph responsive copolymer modulates liver fibrosis in the mice model. Int J Pharm 2023, 641: 123068.
[58] Qin S, Du X, Wang K, Wang D, Zheng J, Xu H, et al. Vitamin a-modified zif-8 lipid nanoparticles for the therapy of liver fibrosis. Int J Pharm 2023, 642:123167. 
[59] Yuan K, Lai K, Miao G, Zhang J, Zhao X, Tan G, et al. Cholinized-polymer functionalized lipid-based drug carriers facilitate liver fibrosis therapy via ultrafast liver-targeting delivery. Biomacromolecules 2024, 25(10):6526-6538. 
[60]  Ma Z, Tian X, Yu S, Shu W, Zhang C, Zhang L, et al. Liver fibrosis amelioration by macrophage-biomimetic polydopamine nanoparticles via synergistically alleviating inflammation and scavenging ros. Mol Pharm 2024, 21(6):3040-3052. 
[61] Shinn J, Park S, Lee S, Park N, Kim S, Hwang S, et al. Antioxidative hyaluronic acid-bilirubin nanomedicine targeting activated hepatic stellate cells for anti-hepatic-fibrosis therapy. Acs Nano 2024, 18 (6):4704-4716.
[62] Hou LS, Zhai XP, Zhang YW, Xing JH, Li C, Zhou SY, et al. Targeted inhibition of autophagy in hepatic stellate cells by hydroxychloroquine: an effective therapeutic approach for the treatment of liver fibrosis. Liver Int 2024, 44(8):1937-1951. 
[63] Wu ZC, Liu XY, Liu JY, Piao JS, Piao MG. Preparation of betulinic acid galactosylated chitosan nanoparticles and their effect on liver fibrosis. Int J Nanomedicine 2022, 17:4195-4210. 
[64] Jeong M, Shin S, Lee G, Lee Y, Park SB, Kang J, et al. Engineered lipid nanoparticles enable therapeutic gene silencing of gtse1 for the treatment of liver fibrosis. J Control Release 2024, 374:337-348. 
[65] Zein N, Yassin F, Ayoub HG, Elewa Y, Mohamed S, Mahmoud MH, et al. In vivo investigation of the anti-liver fibrosis impact of balanites aegyptiaca/ chitosan nanoparticles. Biomed Pharmacother 2024, 172: 116193. 
[66] Li Y, Ma L, Xiong Y, Shi J, Zhang F, Chai Q, et al. Delivering relaxin plasmid by polymeric metformin lipid nanoparticles for liver fibrosis treatment. Curr Drug Deliv 2024, 21(3):431-437. 
[67] Luo S, Yang Y, Zhao T, Zhang R, Fang C, Li Y, et al. Albumin-based silibinin nanocrystals targeting activated hepatic stellate cells for liver fibrosis therapy. Acs Appl Mater Interfaces 2023, 15(6):7747-7758. 
[68] Xia S, Liu Z, Cai J, Ren H, Li Q, Zhang H, et al. Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells. J Control Release 2023, 355:54-67. 
[69] Chen YC, Lee YL, Lee CA, Lin TY, Hwu EE, Cheng PC. Development of a lipid-encapsulated tgfβri-sirna drug for liver fibrosis induced by schistosoma mansoni. Plos Negl Trop Dis 2024, 18(9):e0012502. 
[70] Zhu M, Cheng Y, Zuo L, Bin B, Shen H, Meng T, et al. Sirna-loaded folic acid-modified tpgs alleviate mash via targeting er stress sensor xbp1 and reprogramming macrophages. Int J Biol Sci 2024, 20(10):3823-3841. 
[71] Bai Y, Chen J, Zhang S, Xu G, Mao Z, Ding Y, et al. Inflammation-responsive cell membrane-camouflaged nanoparticles against liver fibrosis via regulating endoplasmic reticulum stress and oxidative stress. Adv Mater 2024, 36(19):e2310443. 
[72] Younis MA, Sato Y, Elewa Y, Harashima H. Reprogramming activated hepatic stellate cells by sirna-loaded nanocarriers reverses liver fibrosis in mice. J Control Release 2023, 361:592-603.
[73] Ma X, Jiang Y, Wen J, Zhao Y, Zeng J, Guo Y. A comprehensive review of natural products to fight liver fibrosis: alkaloids, terpenoids, glycosides, coumarins and other compounds. Eur J Pharmacol 2020, 888: 173578. 
[74] Carnat A, Carnat AP, Chavignon O, Heitz A, Wylde R, Lamaison JL. Luteolin 7-diglucuronide, the major flavonoid compound from aloysia triphylla and verbena officinalis. Planta Med 1995, 61(5):490. 
[75] Tang BX, Zhang Y, Sun DD, Liu QY, Li C, Wang PP, et al. Luteolin-7-diglucuronide, a novel ptp1b inhibitor, ameliorates hepatic stellate cell activation and liver fibrosis in mice. Acta Pharmacol Sin 2024. 
[76] Huang BH, Guo ZW, Lv BH, Zhao X, Li YB, Lv WL. A role for curcumin in preventing liver fibrosis in animals: a systematic review and meta-analysis. Front Pharmacol 2024, 15:1396834. 
[77] Qin X, Wang X, Tian M, Dong Z, Wang J, Wang C, et al. The role of andrographolide in the prevention and treatment of liver diseases. Phytomedicine 2023, 109:154537. 
[78] Li H. Advances in anti hepatic fibrotic therapy with traditional chinese medicine herbal formula. J Ethnopharmacol 2020, 251:112442. 
[79] Chen XF, Wang Y, Ji S, Sun X, Feng Q, Yu H, et al. Hepatoprotective efficacy and interventional mechanism of qijia rougan decoction in liver fibrosis. Front Pharmacol 2022, 13:911250. 
[80] Zheng Y, Ji S, Li X, Wen L. Qijia rougan formula ameliorates ecm deposition in liver fibrosis by regulating the jak1/stat6-microrna-23a feedback loop in macrophage m2 polarization. Biomed Pharmacother 2023, 168:115794. 
[81] Chen X, Sun X, Ji S, Yu H, Wu P. Tmt-based proteomics analysis identifies the interventional mechanisms of qijia rougan decoction in improving liver fibrosis. J Ethnopharmacol 2024, 319(Pt3):117334. 
[82] Qiang R, Zhang Y, Wang Y. Mechanisms of xiaochaihu decoction on treating liver fibrosis explored by network pharmacology. Dis Markers 2022, 2022:8925637. 
[83] Fu C, Zhang Y, Xi WJ, Xu K, Meng F, Ma T, et al. Dahuang zhechong pill attenuates hepatic sinusoidal capillarization in liver cirrhosis and hepatocellular carcinoma rat model via the mk/integrin signaling pathway. J Ethnopharmacol 2023, 308:116191. 
[84] He X, Liang J, Li X, Wang Y, Zhang X, Chen D, et al. Dahuang zhechong pill ameliorates liver fibrosis by regulating gut microbiota and metabolites. J Ethnopharmacol 2024, 321:117402. 
[85] Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 2024. 
[86] Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid hormone transporters. Endocr Rev 2020, 41(2). 
[87] Tang Q, Zeng M, Chen L, Fu N. Targeting thyroid hormone/thyroid hormone receptor axis: an attractive therapy strategy in liver diseases. Front Pharmacol 2022, 13:871100. 
[88] Saponaro F, Sestito S, Runfola M, Rapposelli S, Chiellini G. Selective thyroid hormone receptor-beta (trβ) agonists: new perspectives for the treatment of metabolic and neurodegenerative disorders. Front Med (Lausanne) 2020, 7:331. 
[89] Kannt A, Wohlfart P, Madsen AN, Veidal SS, Feigh M, Schmoll D. Activation of thyroid hormone receptor-β improved disease activity and metabolism independent of body weight in a mouse model of non-alcoholic steatohepatitis and fibrosis. Br J Pharmacol 2021, 178(12):2412-2423. 
[90] Harrison SA, Bashir MR, Guy CD, Zhou R, Moylan CA, Frias JP, et al. Resmetirom (mgl-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2019, 394(10213):2012-2024. 
[91] Harrison SA, Bedossa P, Guy CD, Schattenberg JM, Loomba R, Taub R, et al. A phase 3, randomized, controlled trial of resmetirom in nash with liver fibrosis. N Engl J Med 2024, 390(6):497-509. 
[92] Keam SJ. Resmetirom: first approval. Drugs 2024, 84(6):729-735. 
[93] Feng G, Hernandez-Gea V, Zheng MH. Resmetirom for mash-related cirrhosis. Lancet Gastroenterol Hepatol 2024, 9(7):594.

Downloads: 1792
Visits: 114951

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.