Education, Science, Technology, Innovation and Life
Open Access
Sign In

Research Progress of Lipid Droplets in the Regulation of Lipid Metabolism Function in the Central Nervous System

Download as PDF

DOI: 10.23977/medbm.2025.030114 | Downloads: 5 | Views: 215

Author(s)

Huiqun He 1, Yumei Ren 1, Xinwen Zhang 2

Affiliation(s)

1 Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
2 Xi'an People's Hospital (Xi'an No. 4 Hospital), Xi'an, Shaanxi, China

Corresponding Author

Xinwen Zhang

ABSTRACT

Lipid droplet is an organelle closely related to lipid metabolism, storing intracellular neutral lipids such as triglycerides (TAGs) and cholesterol esters (CEs) in the case of excess fatty acids. A growing number of studies have identified abnormal accumulation of lipid droplets in nerve cells during early development, aging, and neuropathy. In this review, from the perspective of lipid droplet, we first clarified the metabolism of lipid in the brain and the physiological function of lipid droplet in the central nervous system, then summarized the regulatory mechanism between lipid droplet and nerve cells in the central nervous system, and finally studied the relationship between abnormal lipid droplet metabolism and the occurrence of central nervous system diseases.

KEYWORDS

Central Nervous System; Lipid Droplet; Astrocytes; Microglia

CITE THIS PAPER

Huiqun He, Yumei Ren, Xinwen Zhang, Research Progress of Lipid Droplets in the Regulation of Lipid Metabolism Function in the Central Nervous System. MEDS Basic Medicine (2025) Vol. 3: 91-97. DOI: http://dx.doi.org/10.23977/medbm.2025.030114.

REFERENCES

[1] Arbaizar-Rovirosa, M., Gallizioli, M., Lozano, J.J., Sidorova, J., Pedragosa, J., Figuerola, S., Chaparro-Cabanillas, N., Boya, P., Graupera, M., Claret, M., Urra, X., Planas, A.M., 2023a. Transcriptomics and translatomics identify a robust inflammatory gene signature in brain endothelial cells after ischemic stroke. J Neuroinflammation 20, 207. https://doi.org/10.1186/s12974-023-02888-6
[2] Arbaizar-Rovirosa, M., Pedragosa, J., Lozano, J.J., Casal, C., Pol, A., Gallizioli, M., Planas, A.M., 2023b. Aged lipid-laden microglia display impaired responses to stroke. EMBO Mol Med 15, e17175. https://doi.org/10. 15252/emmm.202217175
[3] Badimon, A., Strasburger, H.J., Ayata, P., Chen, X., Nair, A., Ikegami, A., Hwang, P., Chan, A.T., Graves, S.M., Uweru, J.O., Ledderose, C., Kutlu, M.G., Wheeler, M.A., Kahan, A., Ishikawa, M., Wang, Y.-C., Loh, Y.-H.E., Jiang, J.X., Surmeier, D.J., Robson, S.C., Junger, W.G., Sebra, R., Calipari, E.S., Kenny, P.J., Eyo, U.B., Colonna, M., Quintana, F.J., Wake, H., Gradinaru, V., Schaefer, A., 2020. Negative feedback control of neuronal activity by microglia. Nature 586, 417–423. https://doi.org/10.1038/s41586-020-2777-8
[4] Cashikar, A.G., Toral-Rios, D., Timm, D., Romero, J., Strickland, M., Long, J.M., Han, X., Holtzman, D.M., Paul, S.M., 2023. Regulation of astrocyte lipid metabolism and ApoE secretion by the microglial oxysterol, 25-hydroxycholesterol. J Lipid Res 64, 100350. https://doi.org/10.1016/j.jlr.2023.100350
[5] Chen, H., Zhao, S., Jian, Q., Yan, Y., Wang, S., Zhang, X., Ji, Y., 2024. The role of ApoE in fatty acid transport from neurons to astrocytes under ischemia/hypoxia conditions. Mol Biol Rep 51, 320. https://doi.org/10. 1007/s11033-023-08921-4
[6] Cheng, X., Geng, F., Pan, M., Wu, X., Zhong, Y., Wang, C., Tian, Z., Cheng, C., Zhang, R., Puduvalli, V., Horbinski, C., Mo, X., Han, X., Chakravarti, A., Guo, D., 2020. Targeting DGAT1 Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress. Cell Metab 32, 229-242.e8. https://doi.org/10.1016/j.cmet.2020.06.002
[7] Gouna, G., Klose, C., Bosch-Queralt, M., Liu, L., Gokce, O., Schifferer, M., Cantuti-Castelvetri, L., Simons, M., 2021. TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. J Exp Med 218, e20210227. https://doi.org/10.1084/jem.20210227
[8] Harris, J.J., Jolivet, R., Attwell, D., 2012. Synaptic energy use and supply. Neuron 75, 762–777. https://doi. org/10.1016/j.neuron.2012.08.019
[9] Hornemann, T., 2021. Mini review: Lipids in Peripheral Nerve Disorders. Neurosci Lett 740, 135455. https://doi. org/10.1016/j.neulet.2020.135455
[10] Huang, X.-X., Li, L., Jiang, R.-H., Yu, J.-B., Sun, Y.-Q., Shan, J., Yang, J., Ji, J., Cheng, S.-Q., Dong, Y.-F., Zhang, X.-Y., Shi, H.-B., Liu, S., Sun, X.-L., 2024. Lipidomic analysis identifies long-chain acylcarnitine as a target for ischemic stroke. J Adv Res 61, 133–149. https://doi.org/10.1016/j.jare.2023.08.007
[11] Ioannou, M.S., Jackson, J., Sheu, S.-H., Chang, C.-L., Weigel, A.V., Liu, H., Pasolli, H.A., Xu, C.S., Pang, S., Matthies, D., Hess, H.F., Lippincott-Schwartz, J., Liu, Z., 2019. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell 177, 1522-1535.e14. https://doi.org/10.1016/j.cell.2019.04.001
[12] Krohn, J., Domart, F., Do, T.T., Dresbach, T., 2023. The synaptic vesicle protein Mover/TPRG1L is associated with lipid droplets in astrocytes. Glia 71, 2799–2814. https://doi.org/10.1002/glia.24452
[13] Li, H., Liu, P., Deng, S., Zhu, L., Cao, X., Bao, X., Xia, S., Xu, Y., Zhang, B., 2023. Pharmacological Upregulation of Microglial Lipid Droplet Alleviates Neuroinflammation and Acute Ischemic Brain Injury. Inflammation 46, 1832–1848. https://doi.org/10.1007/s10753-023-01844-z
[14] Li, H.-Y., Peng, Z.-G., 2022. Targeting lipophagy as a potential therapeutic strategy for nonalcoholic fatty liver disease. Biochem Pharmacol 197, 114933. https://doi.org/10.1016/j.bcp.2022.114933
[15] Li, Y., Munoz-Mayorga, D., Nie, Y., Kang, N., Tao, Y., Lagerwall, J., Pernaci, C., Curtin, G., Coufal, N.G., Mertens, J., Shi, L., Chen, X., 2024. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK. Cell Metab 36, 1351-1370.e8. https://doi.org/10.1016/j.cmet.2024.03.014
[16] Li, Y.-C., Fu, J.-T., Tzeng, S.-F., 2024. Exposure to lipid mixture induces intracellular lipid droplet formation and impairs mitochondrial functions in astrocytes. Neurochem Int 178, 105792. https://doi.org/10.1016/j. neuint.2024. 105792
[17] Liu, M., Hemba-Waduge, R.-U.-S., Li, X., Huang, X., Liu, T.-H., Han, X., Wang, Y., Ji, J.-Y., 2024. Wnt/Wingless signaling promotes lipid mobilization through signal-induced transcriptional repression. Proc Natl Acad Sci U S A 121, e2322066121. https://doi.org/10.1073/pnas.2322066121
[18] Marschallinger, J., Iram, T., Zardeneta, M., Lee, S.E., Lehallier, B., Haney, M.S., Pluvinage, J.V., Mathur, V., Hahn, O., Morgens, D.W., Kim, J., Tevini, J., Felder, T.K., Wolinski, H., Bertozzi, C.R., Bassik, M.C., Aigner, L., Wyss-Coray, T., 2020. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 23, 194–208. https://doi.org/10.1038/s41593-019-0566-1
[19] Merlini, M., Rafalski, V.A., Ma, K., Kim, K.-Y., Bushong, E.A., Rios Coronado, P.E., Yan, Z., Mendiola, A.S., Sozmen, E.G., Ryu, J.K., Haberl, M.G., Madany, M., Sampson, D.N., Petersen, M.A., Bardehle, S., Tognatta, R., Dean, T., Acevedo, R.M., Cabriga, B., Thomas, R., Coughlin, S.R., Ellisman, M.H., Palop, J.J., Akassoglou, K., 2021. Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nat Neurosci 24, 19–23. https://doi.org/10.1038/s41593-020-00756-7
[20] Olzmann, J.A., Carvalho, P., 2019. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 20, 137–155. https://doi.org/10.1038/s41580-018-0085-z
[21] Peng, Y., Li, Z., Zhang, Z., Chen, Y., Wang, R., Xu, N., Cao, Y., Jiang, C., Chen, Z., Lin, H., 2024. Bromocriptine protects perilesional spinal cord neurons from lipotoxicity after spinal cord injury. Neural Regen Res 19, 1142–1149. https://doi.org/10.4103/1673-5374.385308
[22] Qi, G., Mi, Y., Shi, X., Gu, H., Brinton, R.D., Yin, F., 2021. ApoE4 Impairs Neuron-Astrocyte Coupling of Fatty Acid Metabolism. Cell Rep 34, 108572. https://doi.org/10.1016/j.celrep.2020.108572
[23] Wei, W., Zhang, L., Xin, W., Pan, Y., Tatenhorst, L., Hao, Z., Gerner, S.T., Huber, S., Juenemann, M., Butz, M., Huttner, H.B., Bähr, M., Fitzner, D., Jia, F., Doeppner, T.R., 2024. TREM2 regulates microglial lipid droplet formation and represses post-ischemic brain injury. Biomed Pharmacother 170, 115962. https://doi.org/10. 1016/j. biopha. 2023.115962
[24] Tsou, S.-H., Lin, S.-C., Chen, W.-J., Hung, H.-C., Liao, C.-C., Kornelius, E., Huang, C.-N., Lin, C.-L., Yang, Y.-S., 2024. Hydrogen-Rich Water (HRW) Reduces Fatty Acid-Induced Lipid Accumulation and Oxidative Stress Damage through Activating AMP-Activated Protein Kinase in HepG2 Cells. Biomedicines 12, 1444. https://doi.org/10.3390/biomedicines12071444
[25] Victor, M.B., Leary, N., Luna, X., Meharena, H.S., Scannail, A.N., Bozzelli, P.L., Samaan, G., Murdock, M.H., von Maydell, D., Effenberger, A.H., Cerit, O., Wen, H.-L., Liu, L., Welch, G., Bonner, M., Tsai, L.-H., 2022. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell 29, 1197-1212.e8. https://doi.org/10.1016/j.stem.2022.07.005
[26] Walther, T.C., Chung, J., Farese, R.V., 2017. Lipid Droplet Biogenesis. Annu Rev Cell Dev Biol 33, 491–510. https://doi.org/10.1146/annurev-cellbio-100616-060608
[27] Xu, C., Garcia, D., Lu, Y., Ozuna, K., Adjeroh, D.A., Wang, K., On Behalf Of The Alzheimer's Disease Neuroimaging Initiative, null, 2021. Levels of Angiotensin-Converting Enzyme and Apolipoproteins Are Associated with Alzheimer's Disease and Cardiovascular Diseases. Cells 11, 29. https://doi.org/10.3390/cells11010029
[28] Zadoorian, A., Du, X., Yang, H., 2023. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 19, 443–459. https://doi.org/10.1038/s41574-023-00845-0
[29] Zhang, Q., Shen, X., Yuan, X., Huang, J., Zhu, Y., Zhu, T., Zhang, T., Wu, H., Wu, Q., Fan, Y., Ni, J., Meng, L., He, A., Shi, C., Li, H., Hu, Q., Wang, J., Chang, C., Huang, F., Li, F., Chen, M., Liu, A., Ye, S., Zheng, M., Fang, H., 2024. Lipopolysaccharide binding protein resists hepatic oxidative stress by regulating lipid droplet homeostasis. Nat Commun 15, 3213. https://doi.org/10.1038/s41467-024-47553-5

Downloads: 1586
Visits: 78083

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.