Education, Science, Technology, Innovation and Life
Open Access
Sign In

Sound Transmission Performance of a Ventilated Acoustic Metastructure Composed of Helmholtz Resonator and Thin Membrane

Download as PDF

DOI: 10.23977/jemm.2025.100114 | Downloads: 11 | Views: 498

Author(s)

Qi Liu 1, Rurui Huang 1, Lei Shi 1, Ni Zhen 1

Affiliation(s)

1 School of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, 300222, China

Corresponding Author

Ni Zhen

ABSTRACT

Traditional soundproofing materials face limitations in meeting modern noise reduction demands, particularly in balancing acoustic performance with ventilation requirements. To address this challenge, we propose a novel acoustic metamaterial composed of a Helmholtz resonance cavity coupled with a thin-membrane structure. This hybrid design achieves simultaneous sound insulation, noise reduction, and effective airflow circulation. Numerical results demonstrate that the composite structure exhibits significant low-frequency sound attenuation, with over 10dB of sound transmission loss in low-frequency range of 70~230Hz. Remarkably, the system maintains a peak sound transmission loss of up to 65dB while preserving ventilation functionality. This work also investigates the influence of key geometrical parameters on sound transmission performance of the metastructure. This work provides a promising solution for applications requiring both acoustic control and air circulation in low-frequency range.

KEYWORDS

Sound Insulation; Ventilation; Helmholtz Resonance; Thin Membrane Resonance; Sound Transmission Loss

CITE THIS PAPER

Qi Liu, Rurui Huang, Lei Shi, Ni Zhen, Sound Transmission Performance of a Ventilated Acoustic Metastructure Composed of Helmholtz Resonator and Thin Membrane. Journal of Engineering Mechanics and Machinery (2025) Vol. 10: 130-140. DOI: http://dx.doi.org/10.23977/jemm.2025.100114.

REFERENCES

[1] Morillas, J. M. B., Gozalo, G. R., González, D. M., Moraga, P. A., & Vílchez-Gómez, R. (2018). Noise pollution and urban planning. Current Pollution Reports, 4(3), 208-219.
[2] Kumar, S., & Lee, H. P. (2019). The present and future role of acoustic metamaterials for architectural and urban noise mitigations. In Acoustics,1 (3),590-607.
[3] Na Ji. (2008). Noise hazards to human body and protection control technology. China Health Engineering, 7(3): 182-183.
[4] Guimei Guo, Huanzhong Deng , Wei Xiange, et al. (2016). Progress on the effects of noise on human health. Occupational and Health, (5): 713-716.
[5] Assouar, B., Liang, B., Wu, Y., Li, Y., Cheng, J. C. (2018). Acoustic metasurfaces. Nature Reviews Materials, 3(12), 460-472.
[6] Shi, J., Liu, C., & Lai, Y. (2018). Controlling the effective bending stiffness via out-of-plane rotational resonances in elastic metamaterial thin plates. New Journal of Physics, 20(10), 103043. 
[7] Xu, C., Ma, G., Chen, Z. G., Luo, J., Shi, J., Lai, Y., & Wu, Y. (2020). Three-dimensional acoustic double-zero-index medium with a fourfold degenerate Dirac-like point. Physical Review Letters, 124(7), 074501. 
[8] Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C., & Sheng, P. (2010). Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters, 96(4). 
[9] De Salis, M. F., Oldham, D. J., & Sharples, S. (2002). Noise control strategies for naturally ventilated buildings. Building and Environment, 37(5), 471-484.  
[10] Yu, X. (2019). Design and in-situ measurement of the acoustic performance of a metasurface ventilation window. Applied Acoustics, 152, 127-132. 
[11] Kumar, S., & Lee, H. P. (2020). Labyrinthine acoustic metastructures enabling broadband sound absorption and ventilation. Applied Physics Letters, 116(13).  
[12] Iannace, G., Ciaburro, G., & Trematerra, A. (2021). Metamaterials acoustic barrier. Applied Acoustics, 181, 108172.  
[13] Gritsenko, D., & Paoli, R. (2020). Theoretical optimization of trapped-bubble-based acoustic metamaterial performance. Applied Sciences, 10(16), 5720.
[14] Park, J., Lee, D., & Rho, J. (2020). Recent advances in non-traditional elastic wave manipulation by macroscopic artificial structures. Applied Sciences, 10(2), 547.
[15] Gao, P., Climente, A., Sánchez-Dehesa, J., & Wu, L. (2019). Single-phase metamaterial plates for broadband vibration suppression at low frequencies. Journal of sound and vibration, 444, 108-126.
[16] Hedayati, R., & Lakshmanan, S. P. (2024). Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise. Materials, 17(4), 962.
[17] Gao, Y. X., Li, Z. W., Liang, B., Yang, J., & Cheng, J. C. (2022). Improving sound absorption via coupling modulation of resonance energy leakage and loss in ventilated metamaterials. Applied Physics Letters, 120(26). 
[18] Su, Z., Zhu, Y., Gao, S., Luo, H., & Zhang, H. (2022). High-efficient and broadband acoustic insulation in a ventilated channel with acoustic metamaterials. Frontiers in Mechanical Engineering, 8, 857788.
[19] Du, C., Song, S., Bai, H., Wu, J., Liu, K., & Lu, Z. (2024). An investigation on synergistic resonances of membrane-type acoustic metamaterial with multiple masses. Applied Acoustics, 220, 109988. 
[20] Jang, J. Y., Park, C. S., & Song, K. (2022). Lightweight soundproofing membrane acoustic metamaterial for broadband sound insulation. Mechanical Systems and Signal Processing, 178, 109270. 
[21] Li, X., Zhao, J., Wang, W., Zhu, L., Liu, Y., & Li, X. (2022). Tunable acoustic insulation characteristics of membrane-type acoustic metamaterials array with compact magnets. Applied Acoustics, 187, 108514.
[22] Chang, L., Jiang, A., Rao, M., Ma, F., Huang, H., Zhu, Z., ... & Hu, Y. (2021). Progress of low-frequency sound absorption research utilizing intelligent materials and acoustic metamaterials. RSC advances, 11(60), 37784-37800.
[23] Liu, C., Wang, H., Liang, B., Cheng, J. C., & Lai, Y. (2022). Low-frequency and broadband muffler via cascaded labyrinthine metasurfaces. Applied Physics Letters, 120(23). 
[24] Sun, M., Fang, X., Mao, D., Wang, X., & Li, Y. (2020). Broadband acoustic ventilation barriers. Physical Review Applied, 13(4), 044028.
[25] Ang, L. Y. L., Cui, F., Lim, K. M., & Lee, H. P. (2023). A systematic review of emerging ventilated acoustic metamaterials for noise control. Sustainability, 15(5), 4113.
[26] Gonghuan Du, et al. (2001). Acoustic basis [M]. Nanjing: Nanjing University Press.
[27] Wang, T. T., Wang, Y. F., Deng, Z. C., Laude, V., & Wang, Y. S. (2022). Reconfigurable waveguides defined by selective fluid filling in two-dimensional phononic metaplates. Mechanical Systems and Signal Processing, 165, 108392.
[28] Kumar, S., Xiang, T. B., & Lee, H. P. (2020). Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation. Applied Acoustics, 159, 107088.
[29] Ruan, W. Hu, C. N. (2021). Research on the low-frequency sound insulation of thin-membrane acoustic metamaterials. Machine Design and Manufacturing Engineering, 50(3).
[30] Li, J., Zhou, X., Huang, G., & Hu, G. (2016). Acoustic metamaterials capable of both sound insulation and energy harvesting. Smart Materials and Structures, 25(4), 045013. 

All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.