Education, Science, Technology, Innovation and Life
Open Access
Sign In

Advances in the Research on Drugs Targeting Uric Acid Transporters for the Treatment of Hyperuricemia

Download as PDF

DOI: 10.23977/medbm.2024.020216 | Downloads: 22 | Views: 631

Author(s)

Wenyu Huo 1, Ying Fu 2

Affiliation(s)

1 Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
2 Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China

Corresponding Author

Wenyu Huo

ABSTRACT

Hyperuricemia is a metabolic disease characterized by disordered purine metabolism or impaired uric acid excretion. Its incidence has been steadily increasing, and it has become another common metabolic disease following diabetes. Hyperuricemia is a systemic disease affecting multiple systems. Elevated serum uric acid levels are likely associated with a series of complications, including gout, metabolic syndrome, kidney disease, diabetes mellitus, cardiovascular disease, among others. Therefore, actively intervene in uric acid levels and reduce uric acid deposition in the body is imperative. This review summarizes advances of medications targeting uric acid transport proteins for hyperuricemia, focusing on drug efficacy, adverse effects and complications, with a view to providing helps for the clinical management of hyperuricemia.

KEYWORDS

Hyperuricemia, uric acid-lowering drugs, URAT1 inhibitors

CITE THIS PAPER

Wenyu Huo, Ying Fu, Advances in the Research on Drugs Targeting Uric Acid Transporters for the Treatment of Hyperuricemia. MEDS Basic Medicine (2024) Vol. 2: 113-117. DOI: http://dx.doi.org/10.23977/medbm.2024.020216.

REFERENCES

[1] Zhao, J.; Guo, S.; Schrodi, S. J.; He, D. Trends in the Contribution of Genetic Susceptibility Loci to Hyperuricemia and Gout and Associated Novel Mechanisms. Front. Cell Dev. Biol. 2022, 10, 937855.
[2] Koch, S. E.; Tranter, M.; Robbins, N.; Luther, K.; Singh, U.; Jiang, M.; Ren, X.; Tee, T.; Smith, L.; Varma, P.; Jones, W. K.; Rubinstein, J. Probenecid as a Noninjurious Positive Inotrope in an Ischemic Heart Disease Murine Model. J. Cardiovasc. Pharmacol. Ther. 2013, 18 (3), 280–289.
[3] Kim, S. C.; Tuhina, N.; Kang, E. H.; Liu, J.; Desai, R.; Zhang, M.; Solomon, D. H. Cardiovascular Risks in Older Patients with Gout Initiating Probenecid versus Allopurinol: A Cohort Study. J. Am. Coll. Cardiol. 2018, 71 (9), 994–1004.
[4] Lai, S.-W.; Liao, K.-F.; Kuo, Y.-H.; Hwang, B.-F.; Liu, C.-S. Comparison of Benzbromarone and Allopurinol on the Risk of Chronic Kidney Disease in People with Asymptomatic Hyperuricemia. Eur. J. Intern. Med. 2023, 113, 91–97.
[5] Yan, F.; Xue, X.; Lu, J.; Dalbeth, N.; Qi, H.; Yu, Q.; Wang, C.; Sun, M.; Cui, L.; Liu, Z.; He, Y.; Yuan, X.; Chen, Y.; Cheng, X.; Ma, L.; Li, H.; Ji, A.; Hu, S.; Ran, Z.; Terkeltaub, R.; Li, C. Superiority of Low-Dose Benzbromarone to Low-Dose Febuxostat in a Prospective, Randomized Comparative Effectiveness Trial in Gout Patients With Renal Uric Acid Underexcretion. Arthritis Rheumatol. Hoboken NJ. 2022, 74 (12), 2015–2023.
[6] Zhao, Z.; Liu, J.; Yuan, L.; Yang, Z.; Kuang, P.; Liao, H.; Luo, J.; Feng, H.; Zheng, F.; Chen, Y.; Wu, T.; Guo, J.; Cao, Y.; Yang, Y.; Lin, C.; Zhang, Q.; Chen, J.; Pang, J. Discovery of Novel Benzbromarone Analogs with Improved Pharmacokinetics and Benign Toxicity Profiles as Antihyperuricemic Agents. Eur. J. Med. Chem. 2022, 242, 114682.
[7] Dalbeth, N.; Jones, G.; Terkeltaub, R.; Khanna, D.; Kopicko, J.; Bhakta, N.; Adler, S.; Fung, M.; Storgard, C.; Baumgartner, S.; Perez‐Ruiz, F. Lesinurad, a Selective Uric Acid Reabsorption Inhibitor, in Combination With Febuxostat in Patients With Tophaceous Gout: Findings of a Phase III Clinical Trial. Arthritis Rheumatol. Hoboken Nj. 2017, 69 (9), 1903.
[8] Zhang, S.; Xie, Q.; Xie, S.; Chen, J.; Deng, Q.; Zhong, L.; Guo, J.; Yu, Y. The Association between Urate-Lowering Therapies and Treatment-Related Adverse Events, Liver Damage, and Major Adverse Cardiovascular Events (MACE): A Network Meta-Analysis of Randomized Trials. Pharmacotherapy. 2021, 41 (9), 781–791.
[9] Mk, S.; O, V.; J, P. P.; C, B.; Cj, E. Interventions for Tophi in Gout. Cochrane Database Syst. Rev. 2021, 8 (8).
[10] Shi, X.; Zhao, T.; Da Silva-Júnior, E. F.; Zhang, J.; Xu, S.; Gao, S.; Liu, X.; Zhan, P. Novel Urate Transporter 1 (URAT1) Inhibitors: A Review of Recent Patent Literature (2020–Present). Expert Opin. Ther. Pat. 2022, 32 (12), 1175–1184.
[11] Fitz-Patrick, D.; Roberson, K.; Niwa, K.; Fujimura, T.; Mori, K.; Hall, J.; Yan, X.; Shen, Z.; Liu, S.; Ito, Y.; Baumgartner, S. Safety and Efficacy of Verinurad, a Selective URAT1 Inhibitor, for the Treatment of Patients with Gout and/or Asymptomatic Hyperuricemia in the United States and Japan: Findings from Two Phase II Trials. Mod. Rheumatol. 2019, 29 (6), 1042–1052.
[12] Johansson, S.; Han, D.; Hunt, T.; Björck, K.; Florica, D.; Gillen, M.; Hall, J.; Erlandsson, F. Pharmacokinetics, Pharmacodynamics, and Safety of Verinurad with and without Allopurinol in Healthy Asian, Chinese, and Non-Asian Participants. Pharmacol. Res. Perspect. 2022, 10 (3), e00929.
[13] Stack, A. G.; Dronamraju, N.; Parkinson, J.; Johansson, S.; Johnsson, E.; Erlandsson, F.; Terkeltaub, R. Effect of Intensive Urate Lowering With Combined Verinurad and Febuxostat on Albuminuria in Patients With Type 2 Diabetes: A Randomized Trial. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2021, 77 (4), 481–489.
[14] Kuriyama, S. Dotinurad: A Novel Selective Urate Reabsorption Inhibitor as a Future Therapeutic Option for Hyperuricemia. Clin. Exp. Nephrol. 2020, 24 (1), 1–5.
[15] Takahashi, T.; Beppu, T.; Hidaka, Y.; Hosoya, T. Uric Acid-Lowering Effect of Dotinurad, a Novel Selective Urate Reabsorption Inhibitor, in Hypertensive Patients with Gout or Asymptomatic Hyperuricemia: A Pooled Analysis of Individual Participant Data in Phase II and III Trials. Clin. Exp. Hypertens. 2021, 43 (8), 730–741.
[16] Yanai, H.; Adachi, H.; Hakoshima, M.; Iida, S.; Katsuyama, H. A Possible Therapeutic Application of the Selective Inhibitor of Urate Transporter 1, Dotinurad, for Metabolic Syndrome, Chronic Kidney Disease, and Cardiovascular Disease. Cells. 2024, 13 (5), 450.
[17] Packer, M. Hyperuricemia and Gout Reduction by SGLT2 Inhibitors in Diabetes and Heart Failure. J. Am. Coll. Cardiol. 2024, 83 (2), 371–381.
[18] Hu, H.; Li, W.; Hao, Y.; Peng, Z.; Zou, Z.; Wei, J.; Zhou, Y.; Liang, W.; Cao, Y. The SGLT2 Inhibitor Dapagliflozin Ameliorates Renal Fibrosis in Hyperuricemic Nephropathy. Cell Rep. Med. 2024, 5 (8), 101690.
[19] Lin, Y.; Chen, X.; Ding, H.; Ye, P.; Gu, J.; Wang, X.; Jiang, Z.; Li, D.; Wang, Z.; Long, W.; Li, Z.; Jiang, G.; Li, X.; Bi, L.; Jiang, L.; Wu, J.; Guo, L.; Cai, X.; Lu, X.; Chen, Q.; Chen, H.; Peng, A.; Zuo, X.; Ning, R.; Zhang, Z.; Tai, Y.; Zhang, T.; Bao, C. Efficacy and Safety of a Selective URAT1 Inhibitor SHR4640 in Chinese Subjects with Hyperuricaemia: A Randomized Controlled Phase II Study. Rheumatology. 2021, 60 (11), 5089–5097.
[20] Tang, H.; Cui, B.; Chen, Y.; Chen, L.; Wang, Z.; Zhang, N.; Yang, Y.; Wang, X.; Xie, X.; Sun, L.; Dang, W.; Wang, X.; Li, R.; Zou, J.; Zhao, Y.; Liu, Y. Safety and Efficacy of SHR4640 Combined with Febuxostat for Primary Hyperuricemia: A Multicenter, Randomized, Double-Blind, Phase II Study. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X211067304.
[21] Li, X.; Qi, C.; Shao, M.; Yang, Y.; Wang, Y.; Li, J.; Xiao, Z.; Ye, F. A System for Discovering Novel Uricosurics Targeting Urate Transporter 1 Based on In Vitro and In Vivo Modeling. PHARMACEUTICS. 2024, 16 (2), 172.
[22] Wang, Z.; Li, X.; Jin, Y.; Liu, R.; Di, X.; Zhou, Y.; Wang, Y.; Fan, L.; Chen, Y.; Wang, Y.; Zheng, L. Safety, Efficacy, and Pharmacokinetics of HP501 in Healthy Volunteers and Hyperuricemic Patients: A Phase I/IIa Study. J. Clin. Endocrinol. Metab. 2022, 107 (6), 1667–1678.
[23] Ding, R.; Deng, X.; Chen, L.; Zhen, Y.; Li, X.; Xiong, T.; Zhang, Y.; Chen, H.; Hu, X.; Li, Y.; Zhou, Y.; Jiang, F.; Peng, Q.; Wang, X. A Dose-Escalation Study of HP501, a Highly Selective URAT1 Inhibitor, in Male Chinese Patients with Hyperuricemia. Sci. Rep. 2023, 13 (1), 22190.
[24] Yin, H.; Liu, N.; Chen, J. The Role of the Intestine in the Development of Hyperuricemia. Front. Immunol. 2022, 13.
[25] Jia, S; Ge, K; Yang, L; Zhang, Z; Zang, J; GE, Y. Enhanced Expression of ABCG2 by saRNA increases Uric Acid Excretion of Renal and Intestinal Cells in Mic. Chin Pharm J. 2024, 59 (8), 713–723.
[26] Zou, Z.-P.; Li, J.-L.; Zhang, Y.-F.; Zhou, Y.; Ye, B.-C. Empowering Probiotics with High Xanthine Transport for Effective Hyperuricemia Management. Gut Microbes. 2024, 16 (1), 2399213.

Downloads: 1586
Visits: 78185

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.